咨询与建议

限定检索结果

文献类型

  • 6,411 篇 期刊文献
  • 6,087 篇 会议
  • 236 篇 学位论文
  • 19 册 图书
  • 7 篇 资讯
  • 5 篇 专利

馆藏范围

  • 12,765 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 9,654 篇 工学
    • 5,870 篇 计算机科学与技术...
    • 3,121 篇 电气工程
    • 2,655 篇 软件工程
    • 1,759 篇 信息与通信工程
    • 1,694 篇 生物工程
    • 1,152 篇 控制科学与工程
    • 805 篇 生物医学工程(可授...
    • 776 篇 光学工程
    • 750 篇 仪器科学与技术
    • 690 篇 机械工程
    • 534 篇 电子科学与技术(可...
    • 369 篇 交通运输工程
    • 363 篇 测绘科学与技术
    • 265 篇 材料科学与工程(可...
    • 246 篇 环境科学与工程(可...
    • 235 篇 安全科学与工程
    • 221 篇 土木工程
    • 207 篇 化学工程与技术
  • 3,619 篇 理学
    • 2,067 篇 生物学
    • 1,318 篇 物理学
    • 563 篇 数学
    • 419 篇 化学
    • 302 篇 地球物理学
    • 207 篇 统计学(可授理学、...
  • 2,080 篇 医学
    • 1,612 篇 临床医学
    • 464 篇 基础医学(可授医学...
    • 341 篇 特种医学
  • 1,149 篇 管理学
    • 866 篇 管理科学与工程(可...
    • 304 篇 图书情报与档案管...
  • 316 篇 农学
    • 204 篇 作物学
  • 164 篇 艺术学
  • 129 篇 法学
  • 74 篇 教育学
  • 54 篇 经济学
  • 31 篇 军事学
  • 19 篇 文学
  • 3 篇 历史学
  • 1 篇 哲学

主题

  • 4,494 篇 deep learning
  • 870 篇 real-time system...
  • 767 篇 image processing
  • 727 篇 feature extracti...
  • 711 篇 深度学习
  • 678 篇 machine learning
  • 676 篇 object detection
  • 568 篇 training
  • 513 篇 image segmentati...
  • 500 篇 convolutional ne...
  • 402 篇 neural networks
  • 344 篇 computer vision
  • 327 篇 computational mo...
  • 293 篇 task analysis
  • 275 篇 accuracy
  • 265 篇 convolutional ne...
  • 262 篇 transfer learnin...
  • 218 篇 deep neural netw...
  • 206 篇 convolution
  • 191 篇 cameras

机构

  • 45 篇 中国科学院大学
  • 45 篇 武汉科技大学
  • 39 篇 univ chinese aca...
  • 21 篇 智能信息处理与实...
  • 15 篇 beijing inst tec...
  • 15 篇 northwestern pol...
  • 15 篇 univ chinese aca...
  • 13 篇 chitkara univers...
  • 13 篇 university of ch...
  • 13 篇 华南理工大学
  • 13 篇 peng cheng lab p...
  • 12 篇 华中科技大学
  • 12 篇 北京交通大学
  • 12 篇 hunan univ coll ...
  • 12 篇 天津大学
  • 12 篇 univ sci & techn...
  • 12 篇 cent south univ ...
  • 11 篇 beijing key labo...
  • 11 篇 wuhan univ sch c...
  • 11 篇 华南农业大学

作者

  • 20 篇 zhang lei
  • 19 篇 liu yang
  • 17 篇 li yang
  • 16 篇 wang wei
  • 15 篇 saponara sergio
  • 13 篇 chen chen
  • 12 篇 wang jing
  • 12 篇 li ying
  • 11 篇 wang lei
  • 11 篇 li rui
  • 11 篇 yang xiaofeng
  • 11 篇 liu jun
  • 11 篇 liu tian
  • 10 篇 wang dong
  • 10 篇 chen xi
  • 9 篇 zhang tao
  • 9 篇 li xin
  • 9 篇 rodrigues joel j...
  • 9 篇 zhang qian
  • 9 篇 wang tao

语言

  • 10,812 篇 英文
  • 1,220 篇 中文
  • 661 篇 其他
  • 26 篇 法文
  • 9 篇 朝鲜文
  • 8 篇 土耳其文
  • 3 篇 日文
  • 3 篇 俄文
  • 2 篇 德文
检索条件"任意字段=Real-Time Image Processing and Deep Learning 2020"
12765 条 记 录,以下是501-510 订阅
排序:
Trends and Applications of On-Board image processing for Earth Observation Nanosatellites: A Systematic Review
收藏 引用
INTERNATIONAL JOURNAL OF AERONAUTICAL AND SPACE SCIENCES 2025年 第4期26卷 1989-2019页
作者: Chanoui, Mohammed Alae Khalil, Imane Sbihi, Mohammed Ismaili, Zine El Abidine Alaoui Guennoun, Zouhair Mohammed V Univ Rabat Higher Sch Technol Sale Lab Syst Anal Informat Proc & Ind Management LASTI Rabat Morocco Mohammed V Univ Rabat Univ Ctr Res Space Technol CURTS Mohammadia Sch Engineers Rabat Morocco Mohammed V Univ Rabat Mohammadia Sch Engineers Smart Commun Res Team ERSC Rabat Morocco Mohammed V Univ Rabat Natl Sch Comp Sci & Syst Anal Informat Commun & Embedded Syst Team ICES Rabat Morocco
On-board image processing represents a practical application for satellite imagery, aiming to optimize or prioritize data transmission to ground stations, thereby enhancing bandwidth utilization. In addition to their ... 详细信息
来源: 评论
Evaluation of Transfer learning for Visual Multiple Target Tracking  1
Evaluation of Transfer Learning for Visual Multiple Target T...
收藏 引用
1st International Conference on Advances in Computer Science, Electrical, Electronics, and Communication Technologies, CE2CT 2025
作者: Jadhav, Anisha Anil California State University Department of Computer Science Monterey Bay Seaside United States
deep learning has revolutionized high-level image processing tasks, notably image classification and segmentation, by effectively handling multi-dimensional features in image space. This report investigates the applic... 详细信息
来源: 评论
TinyCount: an efficient crowd counting network for intelligent surveillance
收藏 引用
JOURNAL OF real-time image processing 2024年 第4期21卷 1-13页
作者: Lee, Hyeonbeen Lee, Jangho Incheon Natl Univ Dept Comp Sci & Engn Incheon 22012 South Korea
Crowd counting, the task of estimating the total number of people in an image, is essential for intelligent surveillance. Integrating a well-trained crowd counting network into edge devices, such as intelligent CCTV s... 详细信息
来源: 评论
A deep learning based architecture for multi-class skin cancer classification
收藏 引用
Multimedia Tools and Applications 2024年 第39期83卷 87105-87127页
作者: Mushtaq, Snowber Singh, Omkar Srinagar190006 India
One of the deadliest forms of skin cancer is malignant melanoma, developed by aberrant melanocyte cell development. Efficient diagnostic procedures are essential due to the rising prevalence of skin illnesses resultin... 详细信息
来源: 评论
Adaptive Feature Aggregation Centric Enhance Network for Accurate and Fast Monocular 3-D Object Detection
收藏 引用
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT 2024年 73卷
作者: Lin, Peng-Wei Hsu, Chih-Ming Natl Taipei Univ Technol Inst Mech & Elect Engn Taipei 10608 Taiwan Natl Taipei Univ Technol Dept Mech Engn Taipei 10608 Taiwan
Three-dimensional object detection is crucial in autonomous driving. Monocular 3-D object detection has become a popular area of research in autonomous driving because of its ease of deployment and cost-effectiveness.... 详细信息
来源: 评论
HIDS-IoMT: A deep learning-Based Intelligent Intrusion Detection System for the Internet of Medical Things
收藏 引用
IEEE ACCESS 2025年 13卷 32863-32882页
作者: Berguiga, Abdelwahed Harchay, Ahlem Massaoudi, Ayman Jouf Univ Coll Comp & Informat Sci Dept Comp Sci Sakaka 72388 Saudi Arabia Univ Carthage Mediatron Res Lab Higher Sch Commun Ariana 1054 Tunisia
The expansion of the Internet of Medical Things (IoMT) has enhanced the accuracy, real-time functionality, connectivity, and intelligence of medical examination practices. However, increased interconnectivity of medic... 详细信息
来源: 评论
Demystifying SAR with attention
收藏 引用
EXPERT SYSTEMS WITH APPLICATIONS 2025年 276卷
作者: Patnaik, Nitesh Raj, Rishi Misra, Indranil Kumar, Vinod Kalinga Inst Ind Technol KIIT Univ Sch Comp Engn Bhubaneswar 751024 Odisha India Indian Inst Management Visakhapatnam Informat Syst Visakhapatnam India Indian Space Res Org Space Applicat Ctr Ahmadabad India Indian Inst Technol BHU Dept Comp Sci & Engn Varanasi 221005 Uttar Pradesh India
Synthetic Aperture Radar (SAR) imagery is indispensable for earth observation, offering the ability to capture data under challenging conditions such as cloud cover and darkness. However, its grayscale format and spec... 详细信息
来源: 评论
A Video Frame Extrapolation Scheme Using deep learning-Based Uni-Directional Flow Estimation and Pixel Warping
收藏 引用
IEEE ACCESS 2023年 11卷 105885-105891页
作者: Ban, Tae-Won Gyeongsang Natl Univ Dept Intelligent Commun Engn Jinju 52828 Gyeongsangnam South Korea
This paper investigates video frame extrapolation, which can predict future frames from current and past frames. Although there have been many studies on video frame extrapolation in recent years, most of them suffer ... 详细信息
来源: 评论
Enhancing passive gamma emission tomography data with deep learning
收藏 引用
ANNALS OF NUCLEAR ENERGY 2024年 204卷
作者: Sanchez-Belenguer, Carlos Casado-Coscolla, Alvaro Wolfart, Erik Joint Res Ctr European Commiss Via Enrico Fermi 2749 I-21027 Ispra VA Italy Seidor Italy SRL Contract European Commiss Ispra Italy
In this paper, we address the problem of generating and enhancing Passive Gamma Emission Tomography (PGET) data from a deep learning perspective. The PGET instrument has been developed for the verification of spent nu... 详细信息
来源: 评论
A survey on few-shot class-incremental learning
收藏 引用
NEURAL NETWORKS 2024年 169卷 307-324页
作者: Tian, Songsong Li, Lusi Li, Weijun Ran, Hang Ning, Xin Tiwari, Prayag Chinese Acad Sci Inst Semicond Beijing 100083 Peoples R China Univ Chinese Acad Sci Sch Elect Elect & Commun Engn Beijing 100049 Peoples R China Univ Chinese Acad Sci Sch Integrated Circuits Beijing 100083 Peoples R China Beijing Key Lab Semicond Neural Network Intellige Beijing 100083 Peoples R China Old Dominion Univ Dept Comp Sci Norfolk VA 23529 USA Halmstad Univ Sch Informat Technol S-30118 Halmstad Sweden
Large deep learning models are impressive, but they struggle when real-time data is not available. Few-shot class-incremental learning (FSCIL) poses a significant challenge for deep neural networks to learn new tasks ... 详细信息
来源: 评论