咨询与建议

限定检索结果

文献类型

  • 7,021 篇 期刊文献
  • 6,089 篇 会议
  • 196 篇 学位论文
  • 24 册 图书
  • 9 篇 资讯
  • 4 篇 专利

馆藏范围

  • 13,343 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 10,381 篇 工学
    • 6,293 篇 计算机科学与技术...
    • 3,247 篇 电气工程
    • 2,932 篇 软件工程
    • 1,933 篇 信息与通信工程
    • 1,855 篇 生物工程
    • 1,242 篇 控制科学与工程
    • 923 篇 生物医学工程(可授...
    • 844 篇 仪器科学与技术
    • 822 篇 光学工程
    • 748 篇 机械工程
    • 583 篇 电子科学与技术(可...
    • 380 篇 交通运输工程
    • 371 篇 测绘科学与技术
    • 301 篇 材料科学与工程(可...
    • 250 篇 化学工程与技术
    • 250 篇 环境科学与工程(可...
    • 248 篇 安全科学与工程
    • 244 篇 土木工程
  • 3,989 篇 理学
    • 2,272 篇 生物学
    • 1,413 篇 物理学
    • 615 篇 数学
    • 489 篇 化学
    • 337 篇 地球物理学
    • 239 篇 统计学(可授理学、...
  • 2,265 篇 医学
    • 1,744 篇 临床医学
    • 508 篇 基础医学(可授医学...
    • 359 篇 特种医学
  • 1,263 篇 管理学
    • 911 篇 管理科学与工程(可...
    • 385 篇 图书情报与档案管...
  • 386 篇 农学
    • 232 篇 作物学
  • 174 篇 艺术学
  • 127 篇 法学
  • 95 篇 教育学
  • 65 篇 经济学
  • 28 篇 军事学
  • 16 篇 文学
  • 7 篇 历史学
  • 1 篇 哲学

主题

  • 4,768 篇 deep learning
  • 898 篇 real-time system...
  • 791 篇 image processing
  • 781 篇 深度学习
  • 646 篇 object detection
  • 621 篇 feature extracti...
  • 593 篇 machine learning
  • 542 篇 training
  • 524 篇 convolutional ne...
  • 515 篇 image segmentati...
  • 428 篇 neural networks
  • 355 篇 computer vision
  • 347 篇 computational mo...
  • 287 篇 transfer learnin...
  • 266 篇 accuracy
  • 266 篇 convolutional ne...
  • 246 篇 task analysis
  • 215 篇 deep neural netw...
  • 176 篇 semantic segment...
  • 171 篇 convolution

机构

  • 54 篇 univ chinese aca...
  • 39 篇 中国科学院大学
  • 38 篇 武汉科技大学
  • 19 篇 天津大学
  • 18 篇 智能信息处理与实...
  • 17 篇 chitkara univers...
  • 16 篇 university of ch...
  • 14 篇 华中科技大学
  • 14 篇 wuhan univ sch r...
  • 14 篇 beijing inst tec...
  • 14 篇 四川大学
  • 14 篇 上海交通大学
  • 13 篇 上海理工大学
  • 13 篇 beihang univ sta...
  • 13 篇 tsinghua univ de...
  • 13 篇 nanyang technol ...
  • 12 篇 长安大学
  • 12 篇 beijing key labo...
  • 12 篇 harbin inst tech...
  • 12 篇 中国农业大学

作者

  • 24 篇 li yang
  • 23 篇 wang wei
  • 16 篇 wang jing
  • 16 篇 timofte radu
  • 15 篇 zhang lei
  • 15 篇 liu yang
  • 14 篇 liu jun
  • 12 篇 yang xiaofeng
  • 12 篇 zhang qian
  • 12 篇 eldar yonina c.
  • 12 篇 yang yang
  • 12 篇 zhang qiang
  • 11 篇 li rui
  • 11 篇 saponara sergio
  • 11 篇 liu tian
  • 10 篇 zhang tao
  • 10 篇 wang lei
  • 10 篇 song li
  • 10 篇 chen chen
  • 9 篇 dutta malay kish...

语言

  • 11,249 篇 英文
  • 1,306 篇 中文
  • 692 篇 其他
  • 30 篇 法文
  • 9 篇 朝鲜文
  • 7 篇 土耳其文
  • 6 篇 德文
  • 3 篇 日文
  • 3 篇 俄文
  • 2 篇 西班牙文
检索条件"任意字段=Real-Time Image Processing and Deep Learning 2021"
13343 条 记 录,以下是451-460 订阅
排序:
HDL-ACO hybrid deep learning and ant colony optimization for ocular optical coherence tomography image classification
收藏 引用
SCIENTIFIC REPORTS 2025年 第1期15卷 1-12页
作者: Agarwal, Shivani Dohare, Anand Kumar Saxena, Pranshu Singh, Jagendra Singh, Indrasen Sahu, Umesh Kumar Ajay Kumar Garg Engn Coll Dept Informat Technol Ghaziabad India Greater Noida Inst Technol Engn Inst Dept Informat Technol Greater Noida India Bennett Univ Sch Comp Sci Engn & Technol Greater Noida India Vellore Inst Technol Sch Elect Engn Vellore 632014 Tamil Nadu India Manipal Inst Technol Manipal Acad Higher Educ Dept Mechatron Manipal 576104 Karnataka India
Optical Coherence Tomography (OCT) plays a crucial role in diagnosing ocular diseases, yet conventional CNN-based models face limitations such as high computational overhead, noise sensitivity, and data imbalance. Thi... 详细信息
来源: 评论
DL-DARE: deep learning-based different activity recognition for the human-robot interaction environment
收藏 引用
NEURAL COMPUTING & APPLICATIONS 2023年 第16期35卷 12029-12037页
作者: Kansal, Sachin Jha, Sagar Samal, Prathamesh Thapar Inst Engn Technol Patiala Comp Sci Engn Dept Patiala 147004 Punjab India
This paper proposes a deep learning-based activity recognition for the Human-Robot Interaction environment. The observations of the object state are acquired from the vision sensor in the real-time scenario. The activ... 详细信息
来源: 评论
real-time traffic data: estimating noise and air pollution, comparative ML techniques analysis
收藏 引用
PROCEEDINGS OF THE INSTITUTION OF CIVIL ENGINEERS-TRANSPORT 2025年
作者: Madhu, Kavitha Athira, P. R. Rohini, S. Sikhin, V. C. Balakrishnan, Srijith TKM Coll Engn Dept Civil Engn Kollam India Rockwell Automat Co Bengaluru Karnataka India Delft Univ Technol Delft Netherlands
Motor vehicles significantly contribute to the escalating levels of air and noise pollution in urban centers worldwide. Numerous studies have established a strong correlation between vehicle exhaust emissions, noise l... 详细信息
来源: 评论
Enhanced SCNN-Based Hybrid Spatial-Temporal Lane Detection Model for Intelligent Transportation Systems
收藏 引用
IEEE ACCESS 2024年 12卷 40075-40091页
作者: Li, Jingang Ma, Chenxu Han, Yonghua Mu, Haibo Jiang, Lurong Zhejiang Sci Tech Univ Sch Informat Sci & Engn Hangzhou 310018 Peoples R China Hangzhou Hikvis Digital Technol Co Ltd Hangzhou 310018 Peoples R China
Accurate and timely lane detection is imperative for the seamless operation of autonomous driving systems. In this study, leveraging the gradual variation of lane features within a defined range of width and length, w... 详细信息
来源: 评论
MangoLeafXNet: An Explainable deep learning Model for Accurate Mango Leaf Disease Classification
收藏 引用
IEEE ACCESS 2025年 13卷 93977-94008页
作者: Rayed, Md. Eshmam Jim, Jamin Rahman Islam, Md Juniadul Mridha, M. F. Kabir, Md Mohsin Hossen, Md. Jakir Amer Int Univ Bangladesh Dept Comp Sci & Engn Dhaka 1229 Bangladesh Univ Girona Super Polytech Sch Girona 17001 Spain Malardalens Univ Div Comp Sci & Software Engn S-72220 Vasteras Sweden Multimedia Univ COE Artificial Intelligence Fac Engn & Technol FET Ctr Adv Analyt CAA Melaka 75450 Malaysia
Addressing the global challenge of ensuring a consistent and abundant supply of fresh fruit, particularly in the context of fruit crops, is hindered by the prevalence of plant diseases. These diseases directly impact ... 详细信息
来源: 评论
PlantView: Integrating deep learning with 3D modeling for indoor plant augmentation
收藏 引用
ECOLOGICAL INFORMATICS 2024年 84卷
作者: Afzal, Sitara Khan, Haseeb Ali Lee, Jong Weon Sejong Univ Dept Software Mixed Real & Interact Lab Seoul 05006 South Korea
Indoor plant recognition poses significant challenges due to the variability in lighting conditions, plant species, and growth stages. Despite the growing interest in applying deep learning techniques to plant data, t... 详细信息
来源: 评论
deep learning for High Speed Optical Coherence Elastography With a Fiber Scanning Endoscope
收藏 引用
IEEE TRANSACTIONS ON MEDICAL IMAGING 2025年 第3期44卷 1445-1453页
作者: Neidhardt, Maximilian Latus, Sarah Eixmann, Tim Huttmann, Gereon Schlaefer, Alexander Hamburg Univ Technol Inst Med Technologyand Intelligent Syst D-21073 Hamburg Germany Interdisciplinary CompetenceCenter Interface Res I D-20251 Hamburg Germany Univ Lubeck Inst Biomed Opt D-23562 Lubeck Germany SustAInLivWork Ctr Excellence LT-44249 Kaunas Lithuania Interdisciplinary Competence Ctr Interface Res ICC D-20251 Hamburg Germany
Tissue stiffness is related to soft tissue pathologies and can be assessed through palpation or via clinical imaging systems, e.g., ultrasound or magnetic resonance imaging. Typically, the image based approaches are n... 详细信息
来源: 评论
Exploring the Application of deep learning in Multi-View image Fusion in Complex Environments
收藏 引用
TRAITEMENT DU SIGNAL 2023年 第6期40卷 2731-2740页
作者: Luo, Xiujuan Shao, Lili Heze Univ Sch Comp Heze 274015 Peoples R China
The advancement of technology has unveiled the immense potential of deep learning across various domains, notably in multi-view image fusion within complex environments. Multiview image fusion aims to merge images fro... 详细信息
来源: 评论
RT-Droid: a novel approach for real-time android application analysis with transfer learning-based CNN models
收藏 引用
JOURNAL OF real-time image processing 2023年 第3期20卷 1-17页
作者: Tasyurek, Murat Arslan, Recep Sinan Kayseri Univ Dept Comp Engn Kayseri Turkiye
Today, the number, type and complexity of malware is increasing rapidly. Convolution neural network (CNN) based networks continue to be used in software classification based on image. In this study, a CNN model named ... 详细信息
来源: 评论
Automatic Quantification of Atmospheric Turbulence Intensity in Space-time Domain
收藏 引用
SENSORS 2025年 第5期25卷 1483页
作者: Gulich, Damian Tebaldi, Myrian Sierra-Sosa, Daniel UNLP CONICET La Plata Ctr Invest Opt CIC RA-1897 La Plata Argentina Univ Nacl La Plata UNLP Fac Ingn Dept Ciencias Bas RA-1900 La Plata Argentina Catholic Univ Amer Elect Engn & Comp Sci Washington DC 20064 USA
Quantifying atmospheric turbulence intensity is a challenging task, particularly when assessing real-world scenarios. In this paper, we propose a deep learning method for quantifying atmospheric turbulence intensity b... 详细信息
来源: 评论