咨询与建议

限定检索结果

文献类型

  • 1,263 篇 会议
  • 537 篇 期刊文献
  • 29 篇 学位论文
  • 2 篇 科技报告
  • 1 册 图书
  • 1 篇 专利

馆藏范围

  • 1,833 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,432 篇 工学
    • 729 篇 电气工程
    • 450 篇 信息与通信工程
    • 420 篇 计算机科学与技术...
    • 311 篇 软件工程
    • 267 篇 电子科学与技术(可...
    • 180 篇 航空宇航科学与技...
    • 168 篇 控制科学与工程
    • 134 篇 仪器科学与技术
    • 133 篇 测绘科学与技术
    • 79 篇 光学工程
    • 59 篇 机械工程
    • 38 篇 船舶与海洋工程
    • 26 篇 土木工程
    • 23 篇 建筑学
    • 23 篇 生物医学工程(可授...
    • 18 篇 环境科学与工程(可...
    • 18 篇 生物工程
    • 16 篇 化学工程与技术
    • 14 篇 力学(可授工学、理...
  • 776 篇 理学
    • 510 篇 物理学
    • 200 篇 数学
    • 102 篇 统计学(可授理学、...
    • 50 篇 地球物理学
    • 42 篇 生物学
    • 30 篇 化学
    • 20 篇 海洋科学
    • 17 篇 系统科学
  • 219 篇 医学
    • 204 篇 临床医学
  • 43 篇 管理学
    • 29 篇 管理科学与工程(可...
    • 16 篇 工商管理
  • 21 篇 军事学
  • 12 篇 农学
  • 9 篇 经济学
  • 6 篇 艺术学
  • 3 篇 法学
  • 2 篇 教育学
  • 1 篇 文学

主题

  • 233 篇 signal processin...
  • 141 篇 sensors
  • 126 篇 target detection
  • 116 篇 detection and tr...
  • 98 篇 signal to noise ...
  • 97 篇 radar
  • 93 篇 target tracking
  • 82 篇 data processing
  • 81 篇 object detection
  • 73 篇 filtering (signa...
  • 68 篇 signal detection
  • 60 篇 radar signal pro...
  • 59 篇 signal processin...
  • 57 篇 error analysis
  • 56 篇 feature extracti...
  • 50 篇 electronic filte...
  • 50 篇 radar detection
  • 49 篇 data fusion
  • 43 篇 data association
  • 43 篇 clutter

机构

  • 22 篇 xidian univ natl...
  • 21 篇 univ connecticut...
  • 12 篇 西安电子科技大学
  • 11 篇 xidian univ natl...
  • 10 篇 cyberrnd inc cul...
  • 9 篇 中国科学院大学
  • 7 篇 国防科技大学
  • 7 篇 univ calif san d...
  • 7 篇 national laborat...
  • 7 篇 college of commu...
  • 6 篇 naval surface wa...
  • 6 篇 numerica corp lo...
  • 6 篇 univ chinese aca...
  • 6 篇 西北工业大学
  • 6 篇 univ connecticut...
  • 6 篇 哈尔滨工程大学
  • 5 篇 key laboratory o...
  • 5 篇 duke univ dept e...
  • 5 篇 natl. univ. of d...
  • 5 篇 海军航空大学

作者

  • 22 篇 bar-shalom yaako...
  • 20 篇 kirubarajan t.
  • 19 篇 bar-shalom y
  • 19 篇 kirubarajan t
  • 17 篇 drummond oliver ...
  • 15 篇 willett peter
  • 15 篇 blair wd
  • 12 篇 liao guisheng
  • 10 篇 xu shuwen
  • 10 篇 shui peng-lang
  • 9 篇 drummond oe
  • 9 篇 tharmarasa r.
  • 8 篇 sinha a
  • 7 篇 poore aubrey b.
  • 7 篇 willett p
  • 7 篇 xing mengdao
  • 6 篇 shui penglang
  • 6 篇 blackman ss
  • 6 篇 许述文
  • 6 篇 huang jim

语言

  • 1,654 篇 英文
  • 143 篇 中文
  • 31 篇 其他
  • 4 篇 土耳其文
  • 1 篇 法文
检索条件"任意字段=Signal and Data Processing of Small Targets 2004"
1833 条 记 录,以下是61-70 订阅
排序:
FSIC: Frequency-separated image compression for small object detection
收藏 引用
DIGITAL signal processing 2025年 156卷
作者: Dai, Chengjie Song, Tiantian Chen, Qiang Gong, Hanshen Yang, Bowei Song, Guanghua Zhejiang Univ Sch Aeronaut & Astronaut Hangzhou 310027 Peoples R China Univ Manchester Dept Math Manchester M13 9PL England Shanghai FinShine Technol Ltd Shanghai 201203 Peoples R China
The existing image compression methods are designed for the human visual system. They can achieve good compression quality for low-frequency components of the image that are important to human vision. However, for obj... 详细信息
来源: 评论
Adaptive detection of radar range-Doppler dual-spread targets in lognormal-texture clutter
收藏 引用
DIGITAL signal processing 2025年 157卷
作者: Xue, Jian Fan, Zhen Xu, Shuwen Pan, Meiyan Xian Univ Posts & Telecommun Sch Commun & Informat Engn Xian 710121 Peoples R China Xidian Univ Natl Lab Radar Signal Proc Xian 710071 Peoples R China Xidian Univ Collaborat Innovat Ctr Informat Sensing & Understa Xian 710071 Peoples R China Xian Elect Engn Res Inst Xian Peoples R China
This paper investigates the problem of adaptive detection of radar targets in non-Gaussian clutter, where the target to be detected is considered to behave the dual-spread in the Doppler frequency dimension and the ra... 详细信息
来源: 评论
DR-YOLO: An improved multi-scale small object detection model for drone aerial photography scenes based on YOLOv7
收藏 引用
Digital signal processing: A Review Journal 2025年 164卷
作者: Bi, Hongbo Dai, Rui Han, Fengyang Zhang, Cong Department of Electrical Information Engineering Northeast Petroleum University Daqing163000 China
With the advancement of drone technology, detecting and recognizing ground targets from aerial perspectives has become crucial in various drone applications. However, object detection in drone imagery poses several ch... 详细信息
来源: 评论
GLS: A hybrid deep learning model for radar emitter signal sorting
收藏 引用
DIGITAL signal processing 2025年 161卷
作者: Qi, Liangang Chen, Hongzhuo Guo, Qiang Huang, Shuai Kaliuzhnyi, Mykola Harbin Engn Univ Coll Informat & Commun Engn Harbin 150001 Heilongjiang Peoples R China Kharkiv Natl Univ Radio Elect Sci & Res Lab UA-61166 Kharkiv Ukraine
Radar emitter signal sorting is a pivotal aspect of radar reconnaissance signal processing. The increasing density of the electromagnetic environment in modern radar pulse streams, coupled with the growing complexity ... 详细信息
来源: 评论
Overcoming data Scarcity in Maritime Radar Target Detection via a Complex-Valued Hybrid Spatiotemporal Network
收藏 引用
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS 2025年 22卷
作者: Wang, Ju Wang, Chongyue Li, Zhaojie He, Wenjing Zhong, Yi Huang, Yan Beijing Inst Technol Sch Informat & Elect Beijing 100081 Peoples R China Chinese Acad Sci CASIA Inst Automat Beijing 100190 Peoples R China
Detecting small floating targets on the sea surface has long been a major challenge in radar signal processing. Recently, deep learning (DL) has attracted considerable attention for its potential to improve detection ... 详细信息
来源: 评论
Detection of small objects in remote sensing images based on bi-level routing attention and deformable convolution
收藏 引用
DIGITAL signal processing 2025年 160卷
作者: Chen, Pengbing Liu, Shouxin Feng, Wenshan Wang, Hui Li, Xiaowei Sichuan Univ Sch Elect & Informat Engn Chengdu 610065 Sichuan Peoples R China
Remote sensing images can offer detailed and abundant data regarding geographical surface features. However, existing object detection algorithms still suffer from problems such as susceptibility to complex background... 详细信息
来源: 评论
Multi-view Feature Discrepancy Attack for Single Object Tracking
Multi-view Feature Discrepancy Attack for Single Object Trac...
收藏 引用
International Conference on Acoustics, Speech, and signal processing (ICASSP)
作者: Zhiheng Li Weng Zhimin Yuehuan Wang Huazhong University of Science and Technology Wuhan China
Adversarial attacks on single object tracking (SOT) have attracted increasing attention. However, most previous works have focused on adding small digital perturbations to tracking sequences, assuming access to the da... 详细信息
来源: 评论
Experimental Investigation for GPR Detection of Buried Objects with Varied Sizes and Orientation
Experimental Investigation for GPR Detection of Buried Objec...
收藏 引用
Power, Control and Computing Technologies (ICPC2T), Conference on
作者: Sujeet Roy Himanshu Govil Sandip Mukherjee Prabhat Diwan Department of Applied Geology National Institute of Technology Raipur India Independent Researcher Indian Institute of Remote Sensing Dehradun India
Ground Penetration Radar (GPR) is a remote sensing technology with immense potential. Its performance and quality of results strongly depends on primarily the composition of the soil and further on other aspects of th... 详细信息
来源: 评论
Research on ZYNQ neural network acceleration method for aluminum surface microdefects
收藏 引用
DIGITAL signal processing 2025年 157卷
作者: Zhao, Dongxue Liu, Shenbo Zhang, Zhigang Zhang, Zhao Tang, Lijun Changsha Univ Sci & Technol Sch Phys & Elect Sci Changsha 410114 Hunan Peoples R China
Convolutional Neural Networks (CNN) are an important means of detection of microdefects on the aluminum surface, and the high complexity and computing power requirements of the CNN model lead to difficulties in deploy... 详细信息
来源: 评论
DF-CFAR: deep feature constant false alarm ratio detector based on feature game for sea-surface small target with robustness to sea states
收藏 引用
Neural Computing and Applications 2025年 1-20页
作者: Xiang, Houhong Zhu, Liangliang Chen, Yufeng Wang, Fengyu Zeng, Xiaolu School of Computer Science and Information Engineering Hefei University of Technology Hefei230601 China Department of Early Warning Technology Wuhan Early Warning Academy Wuhan430019 China Hangzhou Institute of Technology Xidian University Hangzhou311200 China School of Artificial Intelligence Beijing University of Posts and Telecommunications Beijing100876 China School of Information and Electronics Beijing Institute of Technology Beijing100081 China
The classical constant false alarm rate (CFAR) detector is optimal for target detection in Gaussian white noise but struggles with unknown, time-varying sea states. data-driven target detection methods are highly sens... 详细信息
来源: 评论