The optimal motion control of an asymmetric rotor-magnetic bearing system based on the linear quadratic regulator theory (LQR) is addressed in this paper. To this end, and as a basic prerequisite, a rigorous modeling ...
详细信息
The optimal motion control of an asymmetric rotor-magnetic bearing system based on the linear quadratic regulator theory (LQR) is addressed in this paper. To this end, and as a basic prerequisite, a rigorous modeling of the rotor-magnetic bearing system that includes also the unbalance effect is considered. The derivation of the equations of motion is based upon the application of the Hamilton's variational principle. New schemes related to the selection of the state weighting matrix Q and the control weighting matrix R involved in the quadratic functional to be mimized are proposed. The obtained results are compared with those reported in the available literature and the benefices of the selected weighting matrices are revealed.
This paper is concerned with the real-time automatic tuning of the multi-input multi-output positive position feedback controllers for smartstructures by the genetic algorithms. The genetic algorithms have proven its...
详细信息
This paper is concerned with the real-time automatic tuning of the multi-input multi-output positive position feedback controllers for smartstructures by the genetic algorithms. The genetic algorithms have proven its effectiveness in searching optimal design parameters without falling into local minimums thus rendering globally optimal solutions. The previous real-time algorithm that tunes a single control parameter is extended to tune more parameters of the MIMO PPF controller. We employ the MIMO PPF controller since it can enhance the damping value of a target mode without affecting other modes if tuned properly. Hence, the traditional positive position feedback controller can be used in adaptive fashion in real time. The final form of the MIMO PPF controller results in the centralized control, thus it involves many parameters. The bounds of the control parameters are estimated from the theoretical model to guarantee the stability. As in the previous research, the digital MIMO PPF control law is downloaded to the DSP chip and a main program, which runs genetic algorithms in real time, updates the parameters of the controller in real time. The experimental frequency response results show that the MIMO PPF controller tuned by GA gives better performance than the theoretically designed PPF. The time response also shows that the GA tuned MIMO PPF controller can suppress vibrations very well.
An experimental testbed is described that is used to study the feasibility of control of a class of flows that have low Reynolds numbers. The experimental testbed is comprised of a thin airfoil with a backward facing ...
详细信息
An experimental testbed is described that is used to study the feasibility of control of a class of flows that have low Reynolds numbers. The experimental testbed is comprised of a thin airfoil with a backward facing step machined into the upper surface. A thin PZT composite flap is mounted at the edge of the backward facing step to enable modification of the flow. Output measurement sensors consist of MEMs-based shear stress sensors, and conventional pressure taps, located on the surface of the airfoil. This paper derives a control framework for the synthesis of control methodologies for the testbed. A reduced order control model is obtained by employing reduced basis approximations of the two dimensional Navier-Stokes equations. Preliminary open loop experimental results are reported that illustrate the existence of convected large scale structures in the flow.
A neural network-based control system is developed for self-adapting vibration control of laminated plates with piezoelectric sensors and actuators. The conventional vibration control approaches are limited by the req...
详细信息
A neural network-based control system is developed for self-adapting vibration control of laminated plates with piezoelectric sensors and actuators. The conventional vibration control approaches are limited by the requirement of an explicit and often accurate identification of the system dynamics and subsequent 'offline' design of an optimal controller. The present study utilizes the powerful learning capabilities of neural networks to capture the structural dynamics and to evolve optimal control dynamics. A hybrid control system developed in this paper is comprised of a feed-forward neural network identifier and a dynamic diagonal recurrent neural network (DRNN) controller. Sensing and actuation are achieved using piezoelectric sensors and actuators. The performance of hybrid control system is tested by numerical simulation of composite plate with embedded piezoelectric actuators and sensors. Finite element equations of motion are developed based on shear deformation theory and implemented for a plate element. The dynamic effects of the mass and stiffness of the piezoelectric patches are considered in the model. Numerical results are presented for a flat plate. A robustness study including the effects of structural parameter variation and partial loss of sensor and actuator is performed. The hybrid control system is shown to perform effectively in all these cases.
A theory for localized vibration control that is based on a partitioned Linear Quadratic Regulator (LQR) synthesis is presented. The present localized control consists of two components: a localized LQR controller tha...
详细信息
A theory for localized vibration control that is based on a partitioned Linear Quadratic Regulator (LQR) synthesis is presented. The present localized control consists of two components: a localized LQR controller that minimizes the control effort to attenuate the disturbances directly applied to each partitioned substructural system, and a controller that mitigates the interface transmission forces. The present theory is applicable both for quasistatic structural shape control and for the attenuation of structural vibrations. The localized controllers can be implemented in terms of strain actuation, proof-mass actuators, and strain rate-type active dampers. The basic features of the present theory are illustrated via numerical experiments as applied to the control of vibrations of a beam.
In this paper, the concept of variable structure system (VSS) with sliding mode was used to develop a fuzzy controller for a class of nonlinear system. The proposed sliding mode fuzzy controller (SMFC) preserves the f...
详细信息
In this paper, the concept of variable structure system (VSS) with sliding mode was used to develop a fuzzy controller for a class of nonlinear system. The proposed sliding mode fuzzy controller (SMFC) preserves the fundamental property of sliding mode control that is stability and robustness in the presence of disturbances and model uncertainties. To reduce the number of design parameters in SMFC, we adopted the concept of parameterization or input-output mapping factor and devised a systematic tool for analyzing and enhancing the performance of SMFC. For demonstration, we applied the SMFC to the inverted pendulum problem. Simulation results indicates that the fuzzy sliding mode control perform well in the presence of disturbances and is insensitive to the parameter variation of the system.
Arrays of sensors and actuators designed to provide robust broadband feedback control with high performance and limited modeling are the subject of this paper. The reconfigurable array technique proposed here enables ...
详细信息
Arrays of sensors and actuators designed to provide robust broadband feedback control with high performance and limited modeling are the subject of this paper. The reconfigurable array technique proposed here enables the design of reduced-order controllers for complex structures and offers the potential to improve closed-loop robustness and to broaden the region of good performance even as the plant changes. The weighted summation of sensor signals senses the modes that are relevant to performance while rejecting the remaining modes;therefore reducing the required complexity of the controller. These weights are obtained from the minimization of a cost function and under certain assumptions;it can be shown that a single optimum solution exists. The use of reconfigurable arrays is motivated by the need to control the vibration of complex structures. A thirty element collocated actuator and sensor array was bonded to a cylinder section. Array weights were computed and successfully applied to isolate target modes. Different methods of computing the weights are implemented and compared. The deleterious effects of spatial aliasing and the performance as a function of the array size are experimentally explored.
The optimal control algorithm is one of the feasible feedback algorithms for vibration suppression of flexible structures. One of the commonly encountered problems of the optimal control implementation is the spillove...
详细信息
The optimal control algorithm is one of the feasible feedback algorithms for vibration suppression of flexible structures. One of the commonly encountered problems of the optimal control implementation is the spillover problem. The spillover generally occurs when modeling a continuous structure that has infinite number of resonance modes as a nominal model with finite modes for controller design. This paper presents a design of an optimal controller that is low order and can prevent the spillover problem when the unmodeled resonance modes perturb the feedback control loop. For low order controller design, this paper proposes modal Hankel singular values (MHSV) for efficient nominal model reduction. Low order controller can be derived from the reduced nominal model. For design of more stable controller, this paper applies frequency dependant weight functions to the cost function. The weight functions prevent the spillover by making optimal controller not to excite the resonance modes that are not included in nominal model. The optimal controller is derived the nominal model. This weight function approach optimizes the control performance and control stability by smoothening the discrepancy between the weights on the modeled modes to be controlled and unmodeled modes to be stabilized. A finite element model is exploited to develop the controller and to test its control performance and stability against high resonance mode spillover.
An analytical method is given for the determination of the eigenfunctions and eigenfrequencies for one-dimensional structural vibration problems in the presence of patch sensors and patch actuators. The method is base...
详细信息
An analytical method is given for the determination of the eigenfunctions and eigenfrequencies for one-dimensional structural vibration problems in the presence of patch sensors and patch actuators. The method is based on converting the differential equation formulation of the problem to an integral equation formulation. The conversion is accomplished by introducing an explicit Green's function. The Green's function consists of two parts, one taking account of the stiffness and the other taking account of the control moments induced by the distributed actuators. The control moments involve piezoelectric constants and feedback voltages made up of gains times the sensor signals. Obtaining the eigenvalues and eigenfunctions of this integral equation gives the solution to the piezo-control problem.
This paper is to present a numerical program of dynamic control for suppressing external disturbance to variable thickness beam-plates with sensors and actuators of piezoelectric layers on/in the structures using the ...
详细信息
This paper is to present a numerical program of dynamic control for suppressing external disturbance to variable thickness beam-plates with sensors and actuators of piezoelectric layers on/in the structures using the scaling function transform of the Daubechies wavelet theory for approximation of functions. After the generalized Gaussian integral is applied to the scaling function transform, an explicit expression of identification of deflection configuration of the structures is expressed by the electric charge/current signals measured from the piezoelectric sensors. When a control law of negative feedback of the identified deflection and velocity signals is employed, the wavelet Galerkin method or wavelet weighted residual method is used to determine control voltage applied on the piezoelectric actuators. Due to that the scaling function transform is like a low-pass filter which can automatically filter out high-order signals of vibration or disturbance from the measurement and the controller employed here, this control approach does not lead to the undesired phenomenon of control instability that is often generated in a control system and caused by the spilling over of high-order signals from measurement and controller if no special technique is used in the control system. Some numerical simulations are carried out to show the efficiency of the proposed approach.
暂无评论