咨询与建议

限定检索结果

文献类型

  • 191 篇 会议
  • 106 篇 期刊文献
  • 12 册 图书
  • 8 篇 学位论文
  • 3 篇 资讯

馆藏范围

  • 320 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 192 篇 工学
    • 105 篇 电气工程
    • 105 篇 计算机科学与技术...
    • 40 篇 软件工程
    • 34 篇 电子科学与技术(可...
    • 23 篇 材料科学与工程(可...
    • 22 篇 控制科学与工程
    • 18 篇 信息与通信工程
    • 16 篇 光学工程
    • 13 篇 生物医学工程(可授...
    • 10 篇 仪器科学与技术
    • 5 篇 机械工程
    • 5 篇 生物工程
    • 4 篇 测绘科学与技术
    • 2 篇 化学工程与技术
    • 2 篇 石油与天然气工程
    • 2 篇 航空宇航科学与技...
  • 156 篇 理学
    • 107 篇 物理学
    • 100 篇 数学
    • 54 篇 统计学(可授理学、...
    • 17 篇 系统科学
    • 5 篇 天文学
    • 5 篇 地球物理学
    • 5 篇 生物学
    • 2 篇 海洋科学
  • 42 篇 医学
    • 34 篇 临床医学
    • 10 篇 基础医学(可授医学...
    • 10 篇 特种医学
    • 3 篇 医学技术(可授医学...
  • 5 篇 管理学
    • 3 篇 图书情报与档案管...
  • 3 篇 经济学
    • 3 篇 应用经济学
  • 1 篇 农学

主题

  • 74 篇 image processing
  • 68 篇 stochastic proce...
  • 34 篇 signal processin...
  • 31 篇 image segmentati...
  • 29 篇 statistical anal...
  • 18 篇 image reconstruc...
  • 17 篇 bayesian methods
  • 16 篇 machine vision
  • 16 篇 image analysis
  • 15 篇 parameter estima...
  • 13 篇 computer vision ...
  • 12 篇 image restoratio...
  • 12 篇 neural networks
  • 12 篇 error analysis
  • 12 篇 robustness
  • 12 篇 image resolution
  • 10 篇 stochastic syste...
  • 9 篇 pattern recognit...
  • 9 篇 statistical mode...
  • 9 篇 estimation

机构

  • 3 篇 texas a&m univ.
  • 3 篇 massachusetts in...
  • 3 篇 university of mi...
  • 2 篇 purdue univ.
  • 2 篇 univ. de buenos ...
  • 2 篇 tampere univ. of...
  • 2 篇 massachusetts in...
  • 2 篇 far eastern stat...
  • 2 篇 univ paris sacla...
  • 2 篇 service developp...
  • 2 篇 univ victoria vi...
  • 2 篇 univ bristol sch...
  • 2 篇 minist agr & lan...
  • 2 篇 heriot watt univ...
  • 2 篇 school of engine...
  • 2 篇 univ. of groning...
  • 2 篇 faculty of engin...
  • 2 篇 state research i...
  • 2 篇 instituto nacion...
  • 2 篇 assumption univ ...

作者

  • 5 篇 astola jaakko t.
  • 5 篇 pereyra marcelo
  • 4 篇 vorapoj patanavi...
  • 3 篇 durmus alain
  • 3 篇 kudo hiroyuki
  • 3 篇 saito tsuneo
  • 3 篇 preteux francois...
  • 3 篇 astola jt
  • 3 篇 dougherty er
  • 3 篇 vidal ana fernan...
  • 3 篇 pieczynski w
  • 3 篇 anan taizo
  • 2 篇 jitapunkul s.
  • 2 篇 alejandro c. fre...
  • 2 篇 goodenough david...
  • 2 篇 mascarenhas nels...
  • 2 篇 zheltov sergei y...
  • 2 篇 dugelay samantha
  • 2 篇 melnik vladimir ...
  • 2 篇 trousset yves

语言

  • 301 篇 英文
  • 13 篇 其他
  • 5 篇 中文
  • 1 篇 西班牙文
检索条件"任意字段=Statistical and Stochastic Methods for Image Processing"
320 条 记 录,以下是271-280 订阅
排序:
statistical-MECHANICS APPROACH TO image DIFFERENCING BASED INSPECTION  2
STATISTICAL-MECHANICS APPROACH TO IMAGE DIFFERENCING BASED I...
收藏 引用
CONF ON NEURAL AND stochastic methods IN image AND SIGNAL processing 2
作者: BALARAM, J Jet Propulsion Lab. (United States)
image differencing based inspection allows the comparison of a prior reference image with a subsequent inspection image to detect changes that can be attributed to flaw induced damage between inspection periods. In ou... 详细信息
来源: 评论
BAYESIAN PART TOLERANCING WITH MEASUREMENT UNCERTAINTY  2
BAYESIAN PART TOLERANCING WITH MEASUREMENT UNCERTAINTY
收藏 引用
CONF ON NEURAL AND stochastic methods IN image AND SIGNAL processing 2
作者: NOBLE, A MUNDY, J GE Corporate Research and Development Ctr. (United Kingdom) GE Corporate Research and Development Ctr. (United States)
Gibbs sampling, and other stochastic simulation methods, have recently received considerable attention in Bayesian statistics. Significant progress has been made in the areas of developing techniques for sampling from... 详细信息
来源: 评论
ROBUST FRACTAL CHARACTERIZATION OF 1-D AND 2-D SIGNALS  2
ROBUST FRACTAL CHARACTERIZATION OF 1-D AND 2-D SIGNALS
收藏 引用
CONF ON NEURAL AND stochastic methods IN image AND SIGNAL processing 2
作者: AVADHANAM, N MITRA, S Texas Tech Univ. (United States)
Fractal characterization of signals is well suited in analysis of some time series data and in classification of natural shapes and textures. A maximum likelihood estimator is used to measure the parameter H which is ... 详细信息
来源: 评论
SPATIOTEMPORAL PATTERN-RECOGNITION USING HIDDEN MARKOV-MODELS  2
SPATIOTEMPORAL PATTERN-RECOGNITION USING HIDDEN MARKOV-MODEL...
收藏 引用
CONF ON NEURAL AND stochastic methods IN image AND SIGNAL processing 2
作者: FIELDING, KH RUCK, DW ROGERS, SK WELSH, BM OXLEY, ME Air Force Institute of Technology (United States)
A spatio-temporal method for identifying objects contained in an image sequence is presented. The Hidden Markov Model (HMM) technique is used as the classification algorithm, making classification decisions based on a... 详细信息
来源: 评论
EXPLICIT NOISE HYPOTHESES IN SPEECH RECOGNITION  2
EXPLICIT NOISE HYPOTHESES IN SPEECH RECOGNITION
收藏 引用
CONF ON NEURAL AND stochastic methods IN image AND SIGNAL processing 2
作者: FOX, R JOSEPHSON, J Univ. of Texas Pan American (United States) The Ohio State Univ. (United States)
Noise is typically present in the input signal for perception problems. Noise arises in speech recognition due to both background sounds, and unintentional derivations from the intended utterance on the part of the sp... 详细信息
来源: 评论
MULTISCALE REPRESENTATIONS OF MARKOV RANDOM-FIELDS
收藏 引用
IEEE TRANSACTIONS ON SIGNAL processing 1993年 第12期41卷 3377-3396页
作者: LUETTGEN, MR KARL, WC WILLSKY, AS TENNEY, RR MIT INFORMAT & DECIS SYST LABCAMBRIDGEMA 02139 MIT DEPT ELECT ENGN & COMP SCICAMBRIDGEMA 02139
Recently, a framework for multiscale stochastic modeling was introduced based on coarse-to-fine scale-recursive dynamics defined on trees. This model class has some attractive characteristics which lead to extremely e... 详细信息
来源: 评论
Multiresolution statistical methods in image analysis
Multiresolution statistical methods in image analysis
收藏 引用
Intelligent Robots and Computer Vision XI: Biological, Neural Net, and 3-D methods
作者: Luettgen, Mark R. Karl, William C. Willsky, Alan S. Tenney, Robert R. Massachusetts Inst. of Technology Cambridge MA USA
In this paper, we discuss a statistical framework for multiscale signal and image processing based on a class of multiresolution stochastic models, which can be used to represent spatial random processes at a range of... 详细信息
来源: 评论
Cluster approximations for statistical image processing
Cluster approximations for statistical image processing
收藏 引用
Neural and stochastic methods in image and Signal processing II
作者: Wu, Chi-hsin Doerschuk, Peter C.
A disadvantage of using discrete-state Markov random field models of images is that optimal estimators for reconstruction problems require excessive and typically random amounts of computation. In one approach the key...
来源: 评论
methods for numerical integration of high-dimensional posterior densities with application to statistical image models
Methods for numerical integration of high-dimensional poster...
收藏 引用
Neural and stochastic methods in image and Signal processing II
作者: LaValle, Steven M. Moroney, Kenneth J. Hutchinson, Seth A.
Numerical computation with Bayesian posterior densities has recently received much attention both in the statistics and computer vision communities. This paper explores the computation of marginal distributions for mo...
来源: 评论
Topology and parameters estimation in Markov random field modelling  2
Topology and parameters estimation in Markov random field mo...
收藏 引用
Neural and stochastic methods in image and Signal processing II 1993
作者: Descombes, Xavier Preteux, Françoise Département IMAGE TELECOM-PARIS 46 rue Barrault Paris75013 France
Within the framework of pattern recognition via Markov random field modelling, we propose three methods for estimating the topological and statistical parameters characterizing the model, namely clique orders, anisotr... 详细信息
来源: 评论