咨询与建议

限定检索结果

文献类型

  • 107 篇 会议
  • 23 篇 期刊文献
  • 4 册 图书
  • 1 篇 学位论文

馆藏范围

  • 135 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 90 篇 理学
    • 74 篇 物理学
    • 60 篇 数学
    • 7 篇 统计学(可授理学、...
    • 5 篇 生物学
    • 5 篇 系统科学
    • 2 篇 化学
    • 1 篇 地球物理学
  • 65 篇 工学
    • 37 篇 计算机科学与技术...
    • 31 篇 电气工程
    • 24 篇 软件工程
    • 16 篇 光学工程
    • 13 篇 信息与通信工程
    • 12 篇 控制科学与工程
    • 8 篇 电子科学与技术(可...
    • 3 篇 生物医学工程(可授...
    • 3 篇 生物工程
    • 2 篇 机械工程
    • 2 篇 材料科学与工程(可...
    • 2 篇 化学工程与技术
    • 1 篇 仪器科学与技术
    • 1 篇 冶金工程
  • 8 篇 管理学
    • 4 篇 管理科学与工程(可...
    • 4 篇 图书情报与档案管...
  • 6 篇 医学
    • 5 篇 临床医学
  • 1 篇 农学
  • 1 篇 艺术学
    • 1 篇 设计学(可授艺术学...

主题

  • 51 篇 stochastic proce...
  • 47 篇 signal processin...
  • 47 篇 image processing
  • 38 篇 machine vision
  • 34 篇 computer vision ...
  • 27 篇 neural networks
  • 18 篇 image segmentati...
  • 11 篇 neurons
  • 10 篇 statistical anal...
  • 10 篇 visual process m...
  • 9 篇 binary data
  • 9 篇 feature extracti...
  • 8 篇 image classifica...
  • 7 篇 computer science
  • 7 篇 deep learning
  • 7 篇 image restoratio...
  • 7 篇 computer simulat...
  • 7 篇 computing system...
  • 7 篇 detection and tr...
  • 6 篇 computer vision ...

机构

  • 4 篇 purdue univ.
  • 2 篇 massachusetts in...
  • 2 篇 univ. of north c...
  • 2 篇 iowa state univ.
  • 2 篇 north carolina s...
  • 2 篇 savannah state c...
  • 2 篇 texas tech univ.
  • 2 篇 univ. of michiga...
  • 2 篇 illinois institu...
  • 1 篇 tulane univ.
  • 1 篇 department of ne...
  • 1 篇 cuny coll staten...
  • 1 篇 department of co...
  • 1 篇 riken aip japan.
  • 1 篇 massachusetts ge...
  • 1 篇 nuctech netherla...
  • 1 篇 tencent ai lab c...
  • 1 篇 allen institute ...
  • 1 篇 columbia univ. n...
  • 1 篇 international co...

作者

  • 2 篇 adams mark
  • 2 篇 diegert carl
  • 2 篇 benarie j
  • 2 篇 brogan joel
  • 2 篇 elfadel im
  • 2 篇 sanders john a.
  • 2 篇 jha sumit
  • 2 篇 doerschuk pc
  • 2 篇 lavalle sm
  • 2 篇 hutchinson sa
  • 2 篇 zhang p
  • 2 篇 torres anibely
  • 2 篇 kotevska olivera
  • 2 篇 schunck bg
  • 1 篇 gervasi osvaldo
  • 1 篇 leduc-primeau fr...
  • 1 篇 wolff daniel
  • 1 篇 castanie f
  • 1 篇 voloshynovskiy s...
  • 1 篇 yu xg

语言

  • 122 篇 英文
  • 10 篇 其他
  • 3 篇 中文
检索条件"任意字段=Stochastic and Neural Methods in Signal Processing, Image Processing, and Computer Vision 1991"
135 条 记 录,以下是1-10 订阅
排序:
IMPROVING ROBUSTNESS OF SPECTROGRAM CLASSIFIERS WITH neural stochastic DIFFERENTIAL EQUATIONS  34
IMPROVING ROBUSTNESS OF SPECTROGRAM CLASSIFIERS WITH NEURAL ...
收藏 引用
34th International Workshop on Machine Learning for signal processing
作者: Brogan, Joel Kotevska, Olivera Torres, Anibely Jha, Sumit Adams, Mark Oak Ridge Natl Lab 1 Bethel Valley Rd Oak Ridge TN 37831 USA
signal analysis and classification is fraught with high levels of noise and perturbation. computer-vision-based deep learning models applied to spectrograms have proven useful in the field of signal classification and... 详细信息
来源: 评论
Gradient bald vulture optimization enabled multi-objective Unet plus plus with DCNN for prostate cancer segmentation and detection
收藏 引用
BIOMEDICAL signal processing AND CONTROL 2024年 87卷
作者: Prasad, Jayashree Rajesh Prasad, Rajesh Shardanand Dhumane, Amol Ranjan, Nihar Tamboli, Mubin MIT Art Design & Technol Univ Sch Comp Comp Sci & Engn Pune 412201 Maharashtra India Pimpri Chinchwad Coll Engn Comp Engn Pune Maharashtra India JSPMs Rajarshi Shahu Coll Engn Informat Technol Pune Maharashtra India Symbiosis Inst Technol Comp Engn Pune Maharashtra India
Prostate cancer (PCa) represents the general type of cancer and is considered the third leading reason of death worldwide. As a combined part of computer-aided detection (CAD) applications, magnetic resonance imaging ... 详细信息
来源: 评论
A Study on Deep Learning-Based image Target Identification Techniques  5th
A Study on Deep Learning-Based Image Target Identification T...
收藏 引用
5th International Conference on 3D Imaging Technologies—Multidimensional signal processing and Deep Learning, 3DIT-MSP and DL 2023
作者: Wang, Yining College of Electronic Information and Optical Engineering Taiyuan University of Technology Shanxi Taiyuan China
This study aims to explore deep learning-based image target recognition methods to improve the performance of target detection and classification in the field of computer vision. The experiments use satellite-acquired... 详细信息
来源: 评论
A Convolutional-Attentional neural Framework for Structure-Aware Performance-Score Synchronization
收藏 引用
IEEE signal processing LETTERS 2022年 29卷 344-348页
作者: Agrawal, Ruchit Wolff, Daniel Dixon, Simon Queen Mary Univ London Ctr Digital Mus London E1 4NS England Inst Res & Coordinat Acoust Mus F-75004 Paris France
Performance-score synchronization is an integral task in signal processing, which entails generating an accurate mapping between an audio recording of a performance and the corresponding musical score. Traditional syn... 详细信息
来源: 评论
Classification of breast mass in two-view mammograms via deep learning
收藏 引用
IET image processing 2021年 第2期15卷 454-467页
作者: Li, Hua Niu, Jing Li, Dengao Zhang, Chen Taiyuan Univ Technol Coll Informat & Comp Taiyuan Peoples R China Taiyuan Univ Technol Coll Data Sci Taiyuan Peoples R China Shanxi Engn Technol Res Ctr Spatial Informat Netw Taiyuan Peoples R China
Breast cancer is the second deadliest cancer among women. Mammography is an important method for physicians to diagnose breast cancer. The main purpose of this study is to use deep learning to automatically classify b... 详细信息
来源: 评论
Rag-bull rider optimisation with deep recurrent neural network for epileptic seizure detection using electroencephalogram
收藏 引用
IET signal processing 2021年 第2期15卷 122-140页
作者: Johnrose, Prabin Jose Muniasamy, Sundaram Georgepeter, Jaffino Kamaraj Coll Engn & Technol Dept Elect & Commun Engn Madurai Tamil Nadu India VSB Engn Coll Dept Elect & Commun Engn Karur India Aditya Coll Engn Dept Elect & Commun Engn Surampalem India
Electroencephalogram (EEG) signal is mostly utilised to monitor epilepsy to revitalize the close loop brain. Several classical methods devised to identify seizures rely on visual analysis of EEG signals which is a cos... 详细信息
来源: 评论
Improving Robustness of Spectrogram Classifiers with neural stochastic Differential Equations
Improving Robustness of Spectrogram Classifiers with Neural ...
收藏 引用
IEEE Workshop on Machine Learning for signal processing
作者: Joel Brogan Olivera Kotevska Anibely Torres Sumit Jha Mark Adams Oak Ridge National Laboratory Oak Ridge TN USA
signal analysis and classification is fraught with high levels of noise and perturbation. computer-vision-based deep learning models applied to spectrograms have proven useful in the field of signal classification and... 详细信息
来源: 评论
Enhancing Arabic Text Classification: A Comparative Study of Machine Learning and Deep Learning Approaches  12
Enhancing Arabic Text Classification: A Comparative Study of...
收藏 引用
12th IEEE International Symposium on signal, image, Video, and Communications, ISIVC 2024
作者: Akhadam, Idriss Ayyad, Habib Hassan 2 University Mathematics Computer Science & Applications Laboratory Mohammedia Morocco
This paper presents a comprehensive pipeline that integrates machine learning (ML) and deep learning (DL) methods for Arabic text classification, achieving high accuracy. Our approach includes a detailed preprocessing... 详细信息
来源: 评论
Detection of Motion Vector-Based Stegomalware in Video Files  1
收藏 引用
International Conference on computer vision and Machine Intelligence, CVMI 2022
作者: Nair, Sandra V. S. Arun Raj Kumar, P. Department of Computer Science and Engineering National Institute of Technology Calicut Kozhikode India
Cybercriminals are increasingly using steganography to launch attacks on devices. The cyberattack is more threatening as steganography hides the embedded malware, if any, making it harder to detect by various anti-vir... 详细信息
来源: 评论
IMPROVING ROBUSTNESS OF SPECTROGRAM CLASSIFIERS WITH neural stochastic DIFFERENTIAL EQUATIONS
arXiv
收藏 引用
arXiv 2024年
作者: Brogan, Joel Kotevska, Olivera Torres, Anibely Jha, Sumit Adams, Mark Oak Ridge National Laboratory 1 Bethel Valley Road Oak RidgeTN37831 United States
signal analysis and classification is fraught with high levels of noise and perturbation. computer-vision-based deep learning models applied to spectrograms have proven useful in the field of signal classification and... 详细信息
来源: 评论