咨询与建议

限定检索结果

文献类型

  • 107 篇 会议
  • 19 篇 期刊文献
  • 4 册 图书
  • 1 篇 学位论文

馆藏范围

  • 131 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 90 篇 理学
    • 74 篇 物理学
    • 60 篇 数学
    • 7 篇 统计学(可授理学、...
    • 5 篇 生物学
    • 5 篇 系统科学
    • 2 篇 化学
    • 1 篇 地球物理学
  • 61 篇 工学
    • 35 篇 计算机科学与技术...
    • 28 篇 电气工程
    • 24 篇 软件工程
    • 16 篇 光学工程
    • 13 篇 信息与通信工程
    • 12 篇 控制科学与工程
    • 8 篇 电子科学与技术(可...
    • 3 篇 生物医学工程(可授...
    • 3 篇 生物工程
    • 2 篇 机械工程
    • 2 篇 材料科学与工程(可...
    • 2 篇 化学工程与技术
    • 1 篇 仪器科学与技术
    • 1 篇 冶金工程
  • 7 篇 管理学
    • 4 篇 图书情报与档案管...
    • 3 篇 管理科学与工程(可...
  • 4 篇 医学
    • 3 篇 临床医学
  • 1 篇 农学
  • 1 篇 艺术学
    • 1 篇 设计学(可授艺术学...

主题

  • 51 篇 stochastic proce...
  • 47 篇 signal processin...
  • 47 篇 image processing
  • 38 篇 machine vision
  • 34 篇 computer vision ...
  • 27 篇 neural networks
  • 15 篇 image segmentati...
  • 11 篇 neurons
  • 10 篇 visual process m...
  • 9 篇 binary data
  • 8 篇 statistical anal...
  • 7 篇 computer science
  • 7 篇 image restoratio...
  • 7 篇 computer simulat...
  • 7 篇 computing system...
  • 7 篇 detection and tr...
  • 6 篇 deep learning
  • 6 篇 magnetorheologic...
  • 6 篇 algorithms
  • 6 篇 3d image process...

机构

  • 4 篇 purdue univ.
  • 2 篇 massachusetts in...
  • 2 篇 univ. of north c...
  • 2 篇 iowa state univ.
  • 2 篇 north carolina s...
  • 2 篇 savannah state c...
  • 2 篇 texas tech univ.
  • 2 篇 univ. of michiga...
  • 2 篇 illinois institu...
  • 1 篇 tulane univ.
  • 1 篇 department of ne...
  • 1 篇 cuny coll staten...
  • 1 篇 department of co...
  • 1 篇 riken aip japan.
  • 1 篇 massachusetts ge...
  • 1 篇 nuctech netherla...
  • 1 篇 tencent ai lab c...
  • 1 篇 allen institute ...
  • 1 篇 columbia univ. n...
  • 1 篇 international co...

作者

  • 2 篇 adams mark
  • 2 篇 diegert carl
  • 2 篇 benarie j
  • 2 篇 brogan joel
  • 2 篇 elfadel im
  • 2 篇 sanders john a.
  • 2 篇 jha sumit
  • 2 篇 doerschuk pc
  • 2 篇 lavalle sm
  • 2 篇 hutchinson sa
  • 2 篇 zhang p
  • 2 篇 torres anibely
  • 2 篇 kotevska olivera
  • 2 篇 schunck bg
  • 1 篇 gervasi osvaldo
  • 1 篇 leduc-primeau fr...
  • 1 篇 wolff daniel
  • 1 篇 castanie f
  • 1 篇 voloshynovskiy s...
  • 1 篇 yu xg

语言

  • 118 篇 英文
  • 10 篇 其他
  • 3 篇 中文
检索条件"任意字段=Stochastic and Neural Methods in Signal Processing, Image Processing, and Computer Vision 1991"
131 条 记 录,以下是11-20 订阅
排序:
Towards Robust Models in Deep Learning: Regularizing neural Networks and Generative Models
Towards Robust Models in Deep Learning: Regularizing Neural ...
收藏 引用
作者: Bao, Ruying Princeton University
学位级别:Ph.D., Doctor of Philosophy
Deep neural networks are widely used in signal processing from a broad range of areas due to their good performances, including computer vision, natural language processing, automatic driving, and so on. However, peop... 详细信息
来源: 评论
Deep neural Decision Forest for Acoustic Scene Classification
Deep Neural Decision Forest for Acoustic Scene Classificatio...
收藏 引用
European signal processing Conference (EUSIPCO)
作者: Jianyuan Sun Xubo Liu Xinhao Mei Jinzheng Zhao Mark D. Plumbley Volkan Kılıç Wenwu Wang Centre for Vision Speech and Signal Processing (CVSSP) University of Surrey UK College of Computer Science and Technology Qingdao University China Department of Electrical and Electronics Engineering Izmir Katip Celebi University Turkey
Acoustic scene classification (ASC) aims to classify an audio clip based on the characteristic of the recording environment. In this regard, deep learning based approaches have emerged as a useful tool for ASC problem... 详细信息
来源: 评论
Enhancing Arabic Text Classification: A Comparative Study of Machine Learning and Deep Learning Approaches
Enhancing Arabic Text Classification: A Comparative Study of...
收藏 引用
International Symposium on signal, image, Video and Communications (ISIVC)
作者: Idriss Akhadam Habib Ayyad Mathematics Computer Science & Applications Laboratory Hassan 2 university Mohammedia Morocco
This paper presents a comprehensive pipeline that integrates machine learning (ML) and deep learning (DL) methods for Arabic text classification, achieving high accuracy. Our approach includes a detailed preprocessing... 详细信息
来源: 评论
Radio-astronomical image Reconstruction with Conditional Denoising Diffusion Model
arXiv
收藏 引用
arXiv 2024年
作者: Drozdova, Mariia Kinakh, Vitaliy Bait, Omkar Taran, Olga Lastufka, Erica Dessauges-Zavadsky, Miroslava Holotyak, Taras Schaerer, Daniel Voloshynovskiy, Slava Department of Computer Science University of Geneva 7 route de Drize Carouge1227 Switzerland Geneva Observatory University of Geneva 51 Chemin Pegasi Versoix1290 Switzerland
Reconstructing sky models from dirty radio images for accurate source extraction, e.g. source localisation and flux estimation, is a complex yet critical task. It has important applications in galaxy evolution studies... 详细信息
来源: 评论
Deep emotion recognition based on audio-visual correlation
收藏 引用
IET computer vision 2020年 第7期14卷 517-527页
作者: Hajarolasvadi, Noushin Demirel, Hasan Eastern Mediterranean Univ Dept Elect & Elect Engn 10 Via Mersin TR-99628 Cyprus Turkey
Human emotion recognition is studied by means of unimodal channels over the last decade. However, efforts continue to answer tempting questions about how variant modalities can complement each other. This study propos... 详细信息
来源: 评论
SSGD: SPARSITY-PROMOTING stochastic GRADIENT DESCENT ALGORITHM FOR UNBIASED DNN PRUNING
SSGD: SPARSITY-PROMOTING STOCHASTIC GRADIENT DESCENT ALGORIT...
收藏 引用
IEEE International Conference on Acoustics, Speech, and signal processing (ICASSP)
作者: Lee, Ching-Hua Fedorov, Igor Rao, Bhaskar D. Garudadri, Harinath Univ Calif San Diego Dept ECE La Jolla CA 92093 USA ARM ML Res San Jose CA USA
While deep neural networks (DNNs) have achieved state-of-the-art results in many fields, they are typically over-parameterized. Parameter redundancy, in turn, leads to inefficiency. Sparse signal recovery (SSR) techni... 详细信息
来源: 评论
BigNeuron: a resource to benchmark and predict performance of algorithms for automated tracing of neurons in light microscopy datasets
收藏 引用
Nature methods 2023年 第6期20卷 824-835页
作者: Linus Manubens-Gil Zhi Zhou Hanbo Chen Arvind Ramanathan Xiaoxiao Liu Yufeng Liu Alessandro Bria Todd Gillette Zongcai Ruan Jian Yang Miroslav Radojević Ting Zhao Li Cheng Lei Qu Siqi Liu Kristofer E Bouchard Lin Gu Weidong Cai Shuiwang Ji Badrinath Roysam Ching-Wei Wang Hongchuan Yu Amos Sironi Daniel Maxim Iascone Jie Zhou Erhan Bas Eduardo Conde-Sousa Paulo Aguiar Xiang Li Yujie Li Sumit Nanda Yuan Wang Leila Muresan Pascal Fua Bing Ye Hai-Yan He Jochen F Staiger Manuel Peter Daniel N Cox Michel Simonneau Marcel Oberlaender Gregory Jefferis Kei Ito Paloma Gonzalez-Bellido Jinhyun Kim Edwin Rubel Hollis T Cline Hongkui Zeng Aljoscha Nern Ann-Shyn Chiang Jianhua Yao Jane Roskams Rick Livesey Janine Stevens Tianming Liu Chinh Dang Yike Guo Ning Zhong Georgia Tourassi Sean Hill Michael Hawrylycz Christof Koch Erik Meijering Giorgio A Ascoli Hanchuan Peng Institute for Brain and Intelligence Southeast University Nanjing China. Microsoft Corporation Redmond WA USA. Tencent AI Lab Bellevue WA USA. Computing Environment and Life Sciences Directorate Argonne National Laboratory Lemont IL USA. Kaya Medical Seattle WA USA. University of Cassino and Southern Lazio Cassino Italy. Center for Neural Informatics Structures and Plasticity Krasnow Institute for Advanced Study George Mason University Fairfax VA USA. Faculty of Information Technology Beijing University of Technology Beijing China. Beijing International Collaboration Base on Brain Informatics and Wisdom Services Beijing China. Nuctech Netherlands Rotterdam the Netherlands. Janelia Research Campus Howard Hughes Medical Institute Ashburn VA USA. Department of Electrical and Computer Engineering University of Alberta Edmonton Alberta Canada. Ministry of Education Key Laboratory of Intelligent Computation and Signal Processing Anhui University Hefei China. Paige AI New York NY USA. Scientific Data Division and Biological Systems and Engineering Division Lawrence Berkeley National Lab Berkeley CA USA. Helen Wills Neuroscience Institute and Redwood Center for Theoretical Neuroscience UC Berkeley Berkeley CA USA. RIKEN AIP Tokyo Japan. Research Center for Advanced Science and Technology (RCAST) The University of Tokyo Tokyo Japan. School of Computer Science University of Sydney Sydney New South Wales Australia. Texas A&M University College Station TX USA. Cullen College of Engineering University of Houston Houston TX USA. Graduate Institute of Biomedical Engineering National Taiwan University of Science and Technology Taipei Taiwan. National Centre for Computer Animation Bournemouth University Poole UK. PROPHESEE Paris France. Department of Neuroscience Columbia University New York NY USA. Mortimer B. Zuckerman Mind Brain Behavior Institute Columbia University New York NY USA. Department of Computer Science Northern Illinois Universit
BigNeuron is an open community bench-testing platform with the goal of setting open standards for accurate and fast automatic neuron tracing. We gathered a diverse set of image volumes across several species that is r...
来源: 评论
A novel stochastic deep conviction network for emotion recognition in speech signal
收藏 引用
JOURNAL OF INTELLIGENT & FUZZY SYSTEMS 2020年 第4期38卷 5175-5190页
作者: Shukla, Shilpi Jain, Madhu Mahatma Gandhi Miss Coll Engn & Technol Noida Uttar Pradesh India Jaypee Inst Informat Technol Dept Elect & Commun Engn Noida Uttar Pradesh India
Deep learning is far and wide considered to be the most powerful method in computer vision fields, which has a lot of applications such as image recognition, robot navigation systems, and self-driving cars. Recent dev... 详细信息
来源: 评论
A Generalized stochastic Implementation of the Disparity Energy Model for Depth Perception
收藏 引用
JOURNAL OF signal processing SYSTEMS FOR signal image AND VIDEO TECHNOLOGY 2018年 第5期90卷 709-725页
作者: Boga, Kaushik Leduc-Primeau, Francois Onizawa, Naoya Matsumiya, Kazumichi Hanyu, Takahiro Gross, Warren J. McGill Univ Dept Elect & Comp Engn Montreal PQ Canada Tohuku Univ Sendai Miyagi Japan
Implementing neuromorphic algorithms is increasingly interesting as the error resilience and low-area, low-energy nature of biological systems becomes the potential solution for problems in robotics and artificial int... 详细信息
来源: 评论
Saccade gaze prediction using a recurrent neural network  24
Saccade gaze prediction using a recurrent neural network
收藏 引用
24th IEEE International Conference on image processing, ICIP 2017
作者: Ngo, Thuyen Manjunath, B.S. Department of Electrical and Computer Engineering University of California Santa Barbara United States
We present a model that generates close-to-human gaze sequences for a given image in the free viewing task. The proposed approach leverages recent advances in image recognition using convolutional neural networks and ... 详细信息
来源: 评论