咨询与建议

限定检索结果

文献类型

  • 107 篇 会议
  • 19 篇 期刊文献
  • 4 册 图书
  • 1 篇 学位论文

馆藏范围

  • 131 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 90 篇 理学
    • 74 篇 物理学
    • 60 篇 数学
    • 7 篇 统计学(可授理学、...
    • 5 篇 生物学
    • 5 篇 系统科学
    • 2 篇 化学
    • 1 篇 地球物理学
  • 61 篇 工学
    • 35 篇 计算机科学与技术...
    • 28 篇 电气工程
    • 24 篇 软件工程
    • 16 篇 光学工程
    • 13 篇 信息与通信工程
    • 12 篇 控制科学与工程
    • 8 篇 电子科学与技术(可...
    • 3 篇 生物医学工程(可授...
    • 3 篇 生物工程
    • 2 篇 机械工程
    • 2 篇 材料科学与工程(可...
    • 2 篇 化学工程与技术
    • 1 篇 仪器科学与技术
    • 1 篇 冶金工程
  • 7 篇 管理学
    • 4 篇 图书情报与档案管...
    • 3 篇 管理科学与工程(可...
  • 4 篇 医学
    • 3 篇 临床医学
  • 1 篇 农学
  • 1 篇 艺术学
    • 1 篇 设计学(可授艺术学...

主题

  • 51 篇 stochastic proce...
  • 47 篇 signal processin...
  • 47 篇 image processing
  • 38 篇 machine vision
  • 34 篇 computer vision ...
  • 27 篇 neural networks
  • 15 篇 image segmentati...
  • 11 篇 neurons
  • 10 篇 visual process m...
  • 9 篇 binary data
  • 8 篇 statistical anal...
  • 7 篇 computer science
  • 7 篇 image restoratio...
  • 7 篇 computer simulat...
  • 7 篇 computing system...
  • 7 篇 detection and tr...
  • 6 篇 deep learning
  • 6 篇 magnetorheologic...
  • 6 篇 algorithms
  • 6 篇 3d image process...

机构

  • 4 篇 purdue univ.
  • 2 篇 massachusetts in...
  • 2 篇 univ. of north c...
  • 2 篇 iowa state univ.
  • 2 篇 north carolina s...
  • 2 篇 savannah state c...
  • 2 篇 texas tech univ.
  • 2 篇 univ. of michiga...
  • 2 篇 illinois institu...
  • 1 篇 tulane univ.
  • 1 篇 department of ne...
  • 1 篇 cuny coll staten...
  • 1 篇 department of co...
  • 1 篇 riken aip japan.
  • 1 篇 massachusetts ge...
  • 1 篇 nuctech netherla...
  • 1 篇 tencent ai lab c...
  • 1 篇 allen institute ...
  • 1 篇 columbia univ. n...
  • 1 篇 international co...

作者

  • 2 篇 adams mark
  • 2 篇 diegert carl
  • 2 篇 benarie j
  • 2 篇 brogan joel
  • 2 篇 elfadel im
  • 2 篇 sanders john a.
  • 2 篇 jha sumit
  • 2 篇 doerschuk pc
  • 2 篇 lavalle sm
  • 2 篇 hutchinson sa
  • 2 篇 zhang p
  • 2 篇 torres anibely
  • 2 篇 kotevska olivera
  • 2 篇 schunck bg
  • 1 篇 gervasi osvaldo
  • 1 篇 leduc-primeau fr...
  • 1 篇 wolff daniel
  • 1 篇 castanie f
  • 1 篇 voloshynovskiy s...
  • 1 篇 yu xg

语言

  • 118 篇 英文
  • 10 篇 其他
  • 3 篇 中文
检索条件"任意字段=Stochastic and Neural Methods in Signal Processing, Image Processing, and Computer Vision 1991"
131 条 记 录,以下是41-50 订阅
排序:
Recovering resolution and reducing noise in basis images via optimization methods using physical models  3
Recovering resolution and reducing noise in basis images via...
收藏 引用
neural and stochastic methods in image and signal processing III 1994
作者: Garnier, Stephen J. Bilbro, Griff L. Snyder, Wesley E. Department of Electrical and Computer Engineering North Carolina State University RaleighNC United States
This work addresses an optimization approach to sensor fusion and applies the technique to Magnetic Resonance image (MRI) restoration. Several images are related using a physical model ( spin equation) to correspondin... 详细信息
来源: 评论
methods FOR NUMERICAL-INTEGRATION OF HIGH-DIMENSIONAL POSTERIOR DENSITIES WITH APPLICATION TO STATISTICAL image-MODELS  2
METHODS FOR NUMERICAL-INTEGRATION OF HIGH-DIMENSIONAL POSTER...
收藏 引用
CONF ON neural AND stochastic methods IN image AND signal processing 2
作者: LAVALLE, SM MORONEY, KJ HUTCHINSON, SA Univ. of Illinois/Urbana-Champaign (United States)
Numerical computation with Bayesian posterior densities has recently received much attention both in the statistics and computer vision communities. This paper explores the computation of marginal distributions for mo... 详细信息
来源: 评论
ROBUST FRACTAL CHARACTERIZATION OF 1-D AND 2-D signalS  2
ROBUST FRACTAL CHARACTERIZATION OF 1-D AND 2-D SIGNALS
收藏 引用
CONF ON neural AND stochastic methods IN image AND signal processing 2
作者: AVADHANAM, N MITRA, S Texas Tech Univ. (United States)
Fractal characterization of signals is well suited in analysis of some time series data and in classification of natural shapes and textures. A maximum likelihood estimator is used to measure the parameter H which is ... 详细信息
来源: 评论
FAST stochastic GLOBAL OPTIMIZATION  2
FAST STOCHASTIC GLOBAL OPTIMIZATION
收藏 引用
CONF ON neural AND stochastic methods IN image AND signal processing 2
作者: BILBRO, GL North Carolina State Univ. (United States)
A new stochastic optimization algorithm is introduced in which a pipeline of many biased stochastic procedures cooperate to concurrently sample the usual Boltzmann distribution for different temperatures. Convergence ... 详细信息
来源: 评论
image COMPRESSION USING BOLTZMANN MACHINES  2
IMAGE COMPRESSION USING BOLTZMANN MACHINES
收藏 引用
CONF ON neural AND stochastic methods IN image AND signal processing 2
作者: LIU, Y Savannah State College (United States)
In this paper, the idea of image compression using the Boltzmann machines will be developed. We will first introduces (theta) -transformation and show it is complete for a certain class of images. Then we will show th... 详细信息
来源: 评论
CLUSTER APPROXIMATIONS FOR STATISTICAL image-processing  2
CLUSTER APPROXIMATIONS FOR STATISTICAL IMAGE-PROCESSING
收藏 引用
CONF ON neural AND stochastic methods IN image AND signal processing 2
作者: WU, CH DOERSCHUK, PC Purdue Univ. (Taiwan) Purdue Univ. (United States)
A disadvantage of using discrete-state Markov random field models of images is that optimal estimators for reconstruction problems require excessive and typically random amounts of computation. In one approach the key... 详细信息
来源: 评论
EVOLVING neural-NETWORK PATTERN CLASSIFIERS  2
EVOLVING NEURAL-NETWORK PATTERN CLASSIFIERS
收藏 引用
CONF ON neural AND stochastic methods IN image AND signal processing 2
作者: MCDONNELL, JR WAAGEN, DE PAGE, WC Naval Command Control and Ocean Surveillance Ctr. (United States)
This work investigates the application of evolutionary programming for automatically configuring neural network architectures for pattern classification tasks. The evolutionary programming search procedure implements ... 详细信息
来源: 评论
image RECOVERY AND SEGMENTATION USING COMPETITIVE LEARNING IN A LAYERED NETWORK  2
IMAGE RECOVERY AND SEGMENTATION USING COMPETITIVE LEARNING I...
收藏 引用
CONF ON neural AND stochastic methods IN image AND signal processing 2
作者: PHOHA, VV OLDHAM, WJB Univ. of Central Texas (United States) Texas Tech Univ. (United States)
In this study, the principle of competitive learning is used to develop an iterative algorithm for image recovery and segmentation. Within the framework of Markov Random Fields, the image recovery problem is transform... 详细信息
来源: 评论
GLOBAL DYNAMICS OF WINNER-TAKE-ALL NETWORKS  2
GLOBAL DYNAMICS OF WINNER-TAKE-ALL NETWORKS
收藏 引用
CONF ON neural AND stochastic methods IN image AND signal processing 2
作者: ELFADEL, IM Massachusetts Institute of Technology (United States)
In this paper, we study the global dynamics of winner-take-all (WTA) networks. These networks generalize Hopfield's networks to the case where competitive behavior is enforced within clusters of neurons while the ... 详细信息
来源: 评论
A CONVERGENCE MEASURE AND SOME PARALLEL ASPECTS OF MARKOV-CHAIN MONTE-CARLO ALGORITHMS  2
A CONVERGENCE MEASURE AND SOME PARALLEL ASPECTS OF MARKOV-CH...
收藏 引用
CONF ON neural AND stochastic methods IN image AND signal processing 2
作者: MALFAIT, M ROOSE, D VANDERMEULEN, D K.U.Leuven Department of Computer Science Celestijnenlaan 200A Heverlee 3001 Belgium K.U.Leuven Interdisciplinary Research Unit for Radiological Imaging (ESAT + Radiology) Kard. Mercierlaan 94 Heverlee 3001 Belgium
We examine methods to assess the convergence of Markov chain Monte Carlo (MCMC) algorithms and to accelerate their execution via parallel computing. We propose a convergence measure based on the deviations between sim... 详细信息
来源: 评论