Uncertainty in logicprogramming has been investigated during the last decades, dealing with various extensions of the classical LP paradigm and different applications. Existing proposals rely on different approaches,...
详细信息
Uncertainty in logicprogramming has been investigated during the last decades, dealing with various extensions of the classical LP paradigm and different applications. Existing proposals rely on different approaches, such as clause annotations based on uncertain truth values, qualification values as a generalization of uncertain truth values, and unification based on proximity relations. On the other hand, the CLP scheme has established itself as a powerful extension of LP that supports efficient computation over specialized domains while keeping a clean declarative semantics. In this paper we propose a new scheme SQCLP designed as an extension of CLP that supports qualification values and proximity relations. We show that several previous proposals can be viewed as particular cases of the new scheme, obtained by partial instantiation. We present a declarative semantics for SQCLP that is based on observables, providing fixpoint and proof-theoretical characterizations of least program models as well as an implementation-independent notion of goal solutions.
A Hidden Markov Model (HMM) is a common statistical model which is widely used for analysis of biological sequence data and other sequential phenomena. In the present paper we show how HMMs can be extended with side-c...
详细信息
A Hidden Markov Model (HMM) is a common statistical model which is widely used for analysis of biological sequence data and other sequential phenomena. In the present paper we show how HMMs can be extended with side-constraints and present constraint solving techniques for efficient inference. Defining HMMs with side-constraints in Constraint logicprogramming has advantages in terms of more compact expression and pruning opportunities during inference. We present a PRISM-based framework for extending HMMs with side-constraints and show how well-known constraints such as cardinality and all different are integrated. We experimentally validate our approach on the biologically motivated problem of global pairwise alignment.
In this paper we explore the use of Answer Set programming (ASP) to formalize, and reason about, psychological knowledge. In the field of psychology, a considerable amount of knowledge is still expressed using only na...
详细信息
In this paper we explore the use of Answer Set programming (ASP) to formalize, and reason about, psychological knowledge. In the field of psychology, a considerable amount of knowledge is still expressed using only natural language. This lack of a formalization complicates accurate studies, comparisons, and verification of theories. We believe that ASP, a knowledge representation formalism allowing for concise and simple representation of defaults, uncertainty, and evolving domains, can be used successfully for the formalization of psychological knowledge. To demonstrate the viability of ASP for this task, in this paper we develop an ASP-based formalization of the mechanics of Short-Term Memory. We also show that our approach can have rather immediate practical uses by demonstrating an application of our formalization to the task of predicting a user's interaction with a graphical interface.
Termination is an important and well-studied property for logic programs. However, almost all approaches for automated termination analysis focus on definite logic programs, whereas real-world Prolog programs typicall...
详细信息
Termination is an important and well-studied property for logic programs. However, almost all approaches for automated termination analysis focus on definite logic programs, whereas real-world Prolog programs typically use the cut operator. We introduce a novel pre-processing method which automatically transforms Prolog programs into logic programs without cuts, where termination of the cut-free program implies termination of the original program. Hence after this pre-processing, any technique for proving termination of definite logic programs can be applied. We implemented this pre-processing in our termination prover AProVE and evaluated it successfully with extensive experiments.
We consider an extension of logic programs, called omega-programs, that can be used to define predicates over infinite lists. omega-programs allow us to specify properties of the infinite behavior of reactive systems ...
详细信息
We consider an extension of logic programs, called omega-programs, that can be used to define predicates over infinite lists. omega-programs allow us to specify properties of the infinite behavior of reactive systems and, in general, properties of infinite sequences of events. The semantics of omega-programs is an extension of the perfect model semantics. We present variants of the familiar unfold/fold rules which can be used for transforming omega-programs. We show that these new rules are correct, that is, their application preserves the perfect model semantics. Then we outline a general methodology based on program transformation for verifying properties of omega-programs. We demonstrate the power of our transformation-based verification methodology by proving some properties of Buchi automata and omega-regular languages.
Description logic Programs (dl-programs) proposed by Eiter et al. constitute an elegant yet powerful formalism for the integration of answer set programming with description logics, for the Semantic Web. In this paper...
详细信息
Description logic Programs (dl-programs) proposed by Eiter et al. constitute an elegant yet powerful formalism for the integration of answer set programming with description logics, for the Semantic Web. In this paper, we generalize the notions of completion and loop formulas of logic programs to description logic programs and show that the answer sets of a dl-program can be precisely captured by the models of its completion and loop formulas. Furthermore, we propose a new, alternative semantics for dl-programs, called the canonical answer set semantics, which is defined by the models of completion that satisfy what are called canonical loop formulas. A desirable property of canonical answer sets is that they are free of circular justifications. Some properties of canonical answer sets are also explored.
One of the differences among the various approaches to suspension-based tabled evaluation is the scheduling strategy. The two most popular strategies are local and batched evaluation. The former collects all the solut...
详细信息
One of the differences among the various approaches to suspension-based tabled evaluation is the scheduling strategy. The two most popular strategies are local and batched evaluation. The former collects all the solutions to a tabled predicate before making any one of them available outside the tabled computation. The latter returns answers one by one before computing them all, which in principle is better if only one answer (or a subset of the answers) is desired. Batched evaluation is closer to SLD evaluation in that it computes solutions lazily as they are demanded, but it may need arbitrarily more memory than local evaluation, which is able to reclaim memory sooner. Some programs which in practice can be executed under the local strategy quickly run out of memory under batched evaluation. This has led to the general adoption of local evaluation at the expense of the more depth-first batched strategy. In this paper we study the reasons for the high memory consumption of batched evaluation and propose a new scheduling strategy which we have termed swapping evaluation. Swapping evaluation also returns answers one by one before completing a tabled call, but its memory usage can be orders of magnitude less than batched evaluation. An experimental implementation in the XSB system shows that swapping evaluation is a feasible memory-scalable strategy that need not compromise execution speed.
An approach to the revision of logic programs under the answer set semantics is presented. For programs P and Q, the goal is to determine the answer sets that correspond to the revision of P by Q, denoted P * Q. A fun...
详细信息
An approach to the revision of logic programs under the answer set semantics is presented. For programs P and Q, the goal is to determine the answer sets that correspond to the revision of P by Q, denoted P * Q. A fundamental principle of classical (AGM) revision, and the one that guides the approach here, is the success postulate. In AGM revision, this stipulates that alpha is an element of K * alpha. By analogy with the success postulate, for programs P and Q, this means that the answer sets of Q will in some sense be contained in those of P * Q. The essential idea is that for P * Q, a three-valued answer set for Q, consisting of positive and negative literals, is first determined. The positive literals constitute a regular answer set, while the negated literals make up a minimal set of naf literals required to produce the answer set from Q. These literals are propagated to the program P, along with those rules of Q that are not decided by these literals. The approach differs from work in update logic programs in two main respects. First, we ensure that the revising logic program has higher priority, and so we satisfy the success postulate;second, for the preference implicit in a revision P * Q, the program Q as a whole takes precedence over P, unlike update logic programs, since answer sets of Q are propagated to P. We show that a core group of the AGM postulates are satisfied, as are the postulates that have been proposed for update logic programs.
The need for integration of ontologies with nonmonotonic rules has been gaining importance in a number of areas, such as the Semantic Web. A number of researchers addressed this problem by proposing a unified semantic...
详细信息
The need for integration of ontologies with nonmonotonic rules has been gaining importance in a number of areas, such as the Semantic Web. A number of researchers addressed this problem by proposing a unified semantics for hybrid knowledge bases composed of both an ontology (expressed in a fragment of first-order logic) and nonmonotonic rules. These semantics have matured over the years, but only provide solutions for the static case when knowledge does not need to evolve. In this paper we take a first step towards addressing the dynamics of hybrid knowledge bases. We focus on knowledge updates and, considering the state of the art of belief update, ontology update and rule update, we show that current solutions are only partial and difficult to combine. Then we extend the existing work on ABox updates with rules, provide a semantics for such evolving hybrid knowledge bases and study its basic properties. To the best of our knowledge, this is the first time that an update operator is proposed for hybrid knowledge bases.
One of the differences among the various approaches to suspension-based tabled evaluation is the scheduling strategy. The two most popular strategies are local and batched evaluation. The former collects all the solut...
详细信息
One of the differences among the various approaches to suspension-based tabled evaluation is the scheduling strategy. The two most popular strategies are local and batched evaluation. The former collects all the solutions to a tabled predicate before making any one of them available outside the tabled computation. The latter returns answers one by one before computing them all, which in principle is better if only one answer (or a subset of the answers) is desired. Batched evaluation is closer to SLD evaluation in that it computes solutions lazily as they are demanded, but it may need arbitrarily more memory than local evaluation, which is able to reclaim memory sooner. Some programs which in practice can be executed under the local strategy quickly run out of memory under batched evaluation. This has led to the general adoption of local evaluation at the expense of the more depth-first batched strategy. In this paper we study the reasons for the high memory consumption of batched evaluation and propose a new scheduling strategy which we have termed swapping evaluation. Swapping evaluation also returns answers one by one before completing a tabled call, but its memory usage can be orders of magnitude less than batched evaluation. An experimental implementation in the XSB system shows that swapping evaluation is a feasible memory-scalable strategy that need not compromise execution speed.
暂无评论