It is well-known that the verification of partial correctness properties of imperative programs can be reduced to the satisfiability problem for constrained Horn clauses (CHCs). However, state-of-the-art solvers for c...
详细信息
It is well-known that the verification of partial correctness properties of imperative programs can be reduced to the satisfiability problem for constrained Horn clauses (CHCs). However, state-of-the-art solvers for constrained Horn clauses (or CHC solvers) based on predicate abstraction are sometimes unable to verify satisfiability because they look for models that are definable in a given class A of constraints, called A-definable models. We introduce a transformation technique, called Predicate Pairing, which is able, in many interesting cases, to transform a set of clauses into an equisatisfiable set whose satisfiability can be proved by finding an A-definable model, and hence can be effectively verified by a state-of-the-art CHC solver. In particular, we prove that, under very general conditions on A, the unfold/fold transformation rules preserve the existence of an A-definable model, that is, if the original clauses have an A-definable model, then the transformed clauses have an A-definable model. The converse does not hold in general, and we provide suitable conditions under which the transformed clauses have an A-definable model if and only if the original ones have an A-definable model. Then, we present a strategy, called Predicate Pairing, which guides the application of the transformation rules with the objective of deriving a set of clauses whose satisfiability problem can be solved by looking for A-definable models. The Predicate Pairing (PP) strategy introduces a new predicate defined by the conjunction of two predicates occurring in the original set of clauses, together with a conjunction of constraints. We will show through some examples that an A-definable model may exist for the new predicate even if it does not exist for its defining atomic conjuncts. We will also present some case studies showing that Predicate Pairing plays a crucial role in the verification of relational properties of programs, that is, properties relating two programs (such as
Meta-Interpretive Learning (MIL) learns logic programs from examples by instantiating meta-rules, which is implemented by the Metagol system based on Prolog. Viewing MIL-problems as combinatorial search problems, they...
详细信息
Meta-Interpretive Learning (MIL) learns logic programs from examples by instantiating meta-rules, which is implemented by the Metagol system based on Prolog. Viewing MIL-problems as combinatorial search problems, they can alternatively be solved by employing Answer Set programming (ASP), which may result in performance gains as a result of efficient conflict propagation. However, a straightforward ASP-encoding of MIL results in a huge search space due to a lack of procedural bias and the need for grounding. To address these challenging issues, we encode MIL in the HEX-formalism, which is an extension of ASP that allows us to outsource the background knowledge, and we restrict the search space to compensate for a procedural bias in ASP. This way, the import of constants from the background knowledge can for a given type of meta-rules be limited to relevant ones. Moreover, by abstracting from term manipulations in the encoding and by exploiting the HEX interface mechanism, the import of such constants can be entirely avoided in order to mitigate the grounding bottleneck. An experimental evaluation shows promising results.
Evolutionary Biologists have long struggled with the challenge of developing analysis workflows in a flexible manner, thus facilitating the reuse of phylogenetic knowledge. An evolutionary biology workflow can be view...
详细信息
Evolutionary Biologists have long struggled with the challenge of developing analysis workflows in a flexible manner, thus facilitating the reuse of phylogenetic knowledge. An evolutionary biology workflow can be viewed as a plan which composes web services that can retrieve, manipulate, and produce phylogenetic trees. The Phylotastic project was launched two years ago as a collaboration between evolutionary biologists and computer scientists, with the goal of developing an open architecture to facilitate the creation of such analysis workflows. While composition of web services is a problem that has been extensively explored in the literature, including within the logicprogramming domain, the incarnation of the problem in Phylotastic provides a number of additional challenges. Along with the need to integrate preferences and formal ontologies in the description of the desired workflow, evolutionary biologists tend to construct workflows in an incremental manner, by successively refining the workflow, by indicating desired changes (e.g., exclusion of certain services, modifications of the desired output). This leads to the need of successive iterations of incremental replanning, to develop a new workflow that integrates the requested changes while minimizing the changes to the original workflow. This paper illustrates how Phylotastic has addressed the challenges of creating and refining phylogenetic analysis workflows using logicprogramming technology and how such solutions have been used within the general framework of the Phylotastic project.
Repeated executions of reasoning tasks for varying inputs are necessary in many applicative settings, such as stream reasoning. In this context, we propose an incremental grounding approach for the answer set semantic...
详细信息
Over the years the Artificial Intelligence (AI) community has produced several datasets which have given the machine learning algorithms the opportunity to learn various skills across various domains. However, a subcl...
详细信息
Over the years the Artificial Intelligence (AI) community has produced several datasets which have given the machine learning algorithms the opportunity to learn various skills across various domains. However, a subclass of these machine learning algorithms that aimed at learning logic programs, namely the Inductive logicprogramming algorithms, have often failed at the task due to the vastness of these datasets. This has impacted the usability of knowledge representation and reasoning techniques in the development of AI systems. In this research, we try to address this scalability issue for the algorithms that learn answer set programs. We present a sound and complete algorithm which takes the input in a slightly different manner and performs an efficient and more user controlled search for a solution. We show via experiments that our algorithm can learn from two popular datasets from machine learning community, namely bAbl (a question answering dataset) and MNIST (a dataset for handwritten digit recognition), whicYh to the best of our knowledge was not previously possible. The system is publicly available at https://***/KdWAcV.
Information Retrieval (IR) aims at retrieving documents that are most relevant to a query provided by a user. Traditional techniques rely mostly on syntactic methods. In some cases, however, links at a deeper semantic...
详细信息
First-order resolution has been used for type inference for many years, including in Hindley-Milner type inference, type-classes, and constrained data types. Dependent types are a new trend in functional languages. In...
详细信息
First-order resolution has been used for type inference for many years, including in Hindley-Milner type inference, type-classes, and constrained data types. Dependent types are a new trend in functional languages. In this paper, we show that proof-relevant first-order resolution can play an important role in automating type inference and term synthesis for dependently typed languages. We propose a calculus that translates type inference and term synthesis problems in a dependently typed language to a logic program and a goal in the proof-relevant first-order Horn clause logic. The computed answer substitution and proof term then provide a solution to the given type inference and term synthesis problem. We prove the decidability and soundness of our method.
The input language of the answer set solver CLINGO is based on the definition of a stable model proposed by Paolo Ferraris. The semantics of the ASP-Core language, developed by the ASP Standardization Working Group, u...
详细信息
Meta-Interpretive Learning (MIL) learns logic programs from examples by instantiating meta-rules, which is implemented by the Metagol system based on Prolog. Viewing MIL-problems as combinatorial search problems, they...
详细信息
Meta-Interpretive Learning (MIL) learns logic programs from examples by instantiating meta-rules, which is implemented by the Metagol system based on Prolog. Viewing MIL-problems as combinatorial search problems, they can alternatively be solved by employing Answer Set programming (ASP), which may result in performance gains as a result of efficient conflict propagation. However, a straightforward ASP-encoding of MIL results in a huge search space due to a lack of procedural bias and the need for grounding. To address these challenging issues, we encode MIL in the HEX-formalism, which is an extension of ASP that allows us to outsource the background knowledge, and we restrict the search space to compensate for a procedural bias in ASP. This way, the import of constants from the background knowledge can for a given type of meta-rules be limited to relevant ones. Moreover, by abstracting from term manipulations in the encoding and by exploiting the HEX interface mechanism, the import of such constants can be entirely avoided in order to mitigate the grounding bottleneck. An experimental evaluation shows promising results.
Evolutionary Biologists have long struggled with the challenge of developing analysis workflows in a flexible manner, thus facilitating the reuse of phylogenetic knowledge. An evolutionary biology workflow can be view...
详细信息
Evolutionary Biologists have long struggled with the challenge of developing analysis workflows in a flexible manner, thus facilitating the reuse of phylogenetic knowledge. An evolutionary biology workflow can be viewed as a plan which composes web services that can retrieve, manipulate, and produce phylogenetic trees. The Phylotastic project was launched two years ago as a collaboration between evolutionary biologists and computer scientists, with the goal of developing an open architecture to facilitate the creation of such analysis workflows. While composition of web services is a problem that has been extensively explored in the literature, including within the logicprogramming domain, the incarnation of the problem in Phylotastic provides a number of additional challenges. Along with the need to integrate preferences and formal ontologies in the description of the desired workflow, evolutionary biologists tend to construct workflows in an incremental manner, by successively refining the workflow, by indicating desired changes (e.g., exclusion of certain services, modifications of the desired output). This leads to the need of successive iterations of incremental replanning, to develop a new workflow that integrates the requested changes while minimizing the changes to the original workflow. This paper illustrates how Phylotastic has addressed the challenges of creating and refining phylogenetic analysis workflows using logicprogramming technology and how such solutions have been used within the general framework of the Phylotastic project.
暂无评论