咨询与建议

限定检索结果

文献类型

  • 113 篇 会议
  • 18 篇 期刊文献
  • 1 篇 学位论文

馆藏范围

  • 132 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 83 篇 工学
    • 79 篇 计算机科学与技术...
    • 33 篇 软件工程
    • 11 篇 控制科学与工程
    • 9 篇 电气工程
    • 5 篇 信息与通信工程
    • 4 篇 生物医学工程(可授...
    • 3 篇 机械工程
    • 3 篇 土木工程
    • 3 篇 生物工程
    • 2 篇 光学工程
    • 2 篇 电子科学与技术(可...
    • 2 篇 建筑学
    • 2 篇 石油与天然气工程
  • 14 篇 理学
    • 7 篇 数学
    • 4 篇 生物学
    • 3 篇 系统科学
    • 2 篇 物理学
    • 2 篇 统计学(可授理学、...
    • 1 篇 化学
    • 1 篇 地质学
  • 14 篇 管理学
    • 10 篇 管理科学与工程(可...
    • 4 篇 图书情报与档案管...
    • 2 篇 工商管理
  • 4 篇 医学
    • 4 篇 临床医学
    • 2 篇 基础医学(可授医学...
    • 2 篇 药学(可授医学、理...
    • 2 篇 特种医学
    • 2 篇 医学技术(可授医学...
  • 3 篇 教育学
    • 3 篇 教育学
  • 2 篇 农学
  • 1 篇 法学
    • 1 篇 社会学

主题

  • 23 篇 machine learning
  • 14 篇 training
  • 12 篇 deep learning
  • 12 篇 high performance...
  • 10 篇 conferences
  • 7 篇 machine learning...
  • 6 篇 scalability
  • 4 篇 reinforcement le...
  • 4 篇 data mining
  • 4 篇 computational mo...
  • 4 篇 hpc
  • 4 篇 cloud computing
  • 3 篇 runtime
  • 3 篇 supercomputers
  • 3 篇 ethics
  • 3 篇 smart environmen...
  • 3 篇 bayesian optimiz...
  • 3 篇 high-performance...
  • 3 篇 visualization
  • 3 篇 computers

机构

  • 3 篇 offenburg univ i...
  • 2 篇 fraunhofer itwm ...
  • 2 篇 fraunhofer ctr m...
  • 2 篇 oak ridge nation...
  • 2 篇 argonne natl lab...
  • 2 篇 pacific northwes...
  • 2 篇 nvidia nice
  • 2 篇 intel corp santa...
  • 2 篇 fraunhofer itwm ...
  • 2 篇 lawrence livermo...
  • 2 篇 fraunhofer cente...
  • 2 篇 competence cente...
  • 2 篇 lawrence berkele...
  • 2 篇 institute for ma...
  • 1 篇 fraunhofer itwm ...
  • 1 篇 science and engi...
  • 1 篇 college of compu...
  • 1 篇 rocketml inc bea...
  • 1 篇 korea adv inst s...
  • 1 篇 ahmanson-lovelac...

作者

  • 5 篇 keuper janis
  • 4 篇 lim seung-hwan
  • 3 篇 pfreundt franz-j...
  • 3 篇 farrell steven
  • 3 篇 janis keuper
  • 2 篇 carrera david
  • 2 篇 gerofi balazs
  • 2 篇 gauger nicolas r...
  • 2 篇 nicolae bogdan
  • 2 篇 patton robert m.
  • 2 篇 srivastava ajite...
  • 2 篇 arjunan pandaras...
  • 2 篇 bogdan nicolae
  • 2 篇 young steven r.
  • 2 篇 nicolas r. gauge...
  • 2 篇 ibrahim khaled z...
  • 2 篇 adavani santi
  • 2 篇 emani murali
  • 2 篇 shen xipeng
  • 2 篇 ganapathysubrama...

语言

  • 129 篇 英文
  • 3 篇 其他
检索条件"任意字段=Workshop on Machine Learning in High-Performance Computing Environments, MLHPC 2015"
132 条 记 录,以下是1-10 订阅
排序:
Proceedings of mlhpc 2021: workshop on machine learning in high performance computing environments, Held in conjunction with SC 2021: The International Conference for high performance computing, Networking, Storage and Analysis
Proceedings of MLHPC 2021: Workshop on Machine Learning in H...
收藏 引用
7th IEEE/ACM workshop on machine learning in high performance computing environments, mlhpc 2021
The proceedings contain 9 papers. The topics discussed include: semantic-aware lossless data compression for deep learning recommendation model (DLRM);Colmena: scalable machine-learning-based steering of ensemble simu...
来源: 评论
Proceedings of 2020 IEEE/ACM workshop on machine learning in high performance computing environments, mlhpc 2020 and workshop on Artificial Intelligence and machine learning for Scientific Applications, AI4S 2020 - Held in conjunction with SC 2020: The International Conference for high performance computing, Networking, Storage and Analysis
Proceedings of 2020 IEEE/ACM Workshop on Machine Learning in...
收藏 引用
6th IEEE/ACM workshop on machine learning in high performance computing environments, mlhpc 2020 and 1st workshop on Artificial Intelligence and machine learning for Scientific Applications, AI4S 2020
The proceedings contain 11 papers. The topics discussed include: accelerate distributed stochastic descent for Nonconvex optimization with momentum;accelerating GPU-based machine learning in python using MPI library: ...
来源: 评论
Proceedings of mlhpc 2019: 5th workshop on machine learning in HPC environments - Held in conjunction with SC 2019: The International Conference for high performance computing, Networking, Storage and Analysis
Proceedings of MLHPC 2019: 5th Workshop on Machine Learning ...
收藏 引用
5th IEEE/ACM workshop on machine learning in HPC environments, mlhpc 2019
The proceedings contain 8 papers. The topics discussed include: scalable hyperparameter optimization with lazy Gaussian processes;understanding scalability and fine-grain parallelism of synchronous data parallel train...
来源: 评论
MLG-HPCE 2024: International workshop on machine learning with Graphs in high performance computing environments
MLG-HPCE 2024: International Workshop on Machine Learning wi...
收藏 引用
high performance computing, Networking, Storage and Analysis, SC-W: workshops of the International Conference for
来源: 评论
MLG-HPCE 2024: International workshop on machine learning with Graphs in high performance computing environments
Proceedings of SC 2024-W: Workshops of the International Con...
收藏 引用
Proceedings of SC 2024-W: workshops of the International Conference for high performance computing, Networking, Storage and Analysis 2024年 1035-1036页
来源: 评论
An online ensemble method for auto-scaling NFV-based applications in the edge
收藏 引用
CLUSTER computing-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS 2024年 第4期27卷 4255-4279页
作者: da Silva, Thiago Pereira Batista, Thais Vasconcelos Delicato, Flavia Coimbra Pires, Paulo Ferreira Fed Univ Rio Grande do Norte UFRN Natal RN Brazil Fluminense Fed Univ UFF Niteroi RJ Brazil
The synergy of edge computing and machine learning (ML) holds immense potential for revolutionizing Internet of Things (IoT) applications, particularly in scenarios characterized by high-speed, continuous data generat... 详细信息
来源: 评论
high-performance Deep learning Toolbox for Genome-Scale Prediction of Protein Structure and Function  7
High-Performance Deep Learning Toolbox for Genome-Scale Pred...
收藏 引用
7th IEEE/ACM workshop on machine learning in high performance computing environments (mlhpc)
作者: Gao, Mu Lund-Andersen, Peik Morehead, Alex Mahmud, Sajid Chen, Chen Chen, Xiao Giri, Nabin Roy, Raj S. Quadir, Farhan Effler, T. Chad Prout, Ryan Abraham, Subil Elwasif, Wael Haas, N. Quentin Skolnick, Jeffrey Cheng, Jianlin Sedova, Ada Georgia Inst Technol Atlanta GA 30332 USA Univ Idaho Moscow ID 83843 USA Oak Ridge Natl Lab Oak Ridge TN 37830 USA Univ Missouri Columbia MO 65211 USA
Computational biology is one of many scientific disciplines ripe for innovation and acceleration with the advent of high-performance computing (HPC). In recent years, the field of machine learning has also seen signif... 详细信息
来源: 评论
Is Disaggregation possible for HPC Cognitive Simulation?  7
Is Disaggregation possible for HPC Cognitive Simulation?
收藏 引用
7th IEEE/ACM workshop on machine learning in high performance computing environments (mlhpc)
作者: Wyatt, Michael R., II Yamamoto, Valen Tosi, Zoe Karlin, Ian Van Essen, Brian Lawrence Livermore Natl Lab Tenter Appl Sci Comp Livermore CA 94550 USA Intel Corp Santa Clara CA 95051 USA
Cognitive simulation (CogSim) is an important and emerging workflow for HPC scientific exploration and scientific machine learning (SciML). One challenging workload for CogSim is the replacement of one component in a ... 详细信息
来源: 评论
Semantic-Aware Lossless Data Compression for Deep learning Recommendation Model (DLRM)  7
Semantic-Aware Lossless Data Compression for Deep Learning R...
收藏 引用
7th IEEE/ACM workshop on machine learning in high performance computing environments (mlhpc)
作者: Pumma, Sarunya Vishnu, Abhinav Adv Micro Devices Inc AMD Santa Clara CA 95054 USA
As the architectures and capabilities of deep neural networks evolve, they become more sophisticated to train and use. Deep learning Recommendation Model (DLRM), a new neural network for recommendation systems, introd... 详细信息
来源: 评论
Colmena: Scalable machine-learning-Based Steering of Ensemble Simulations for high performance computing  7
Colmena: Scalable Machine-Learning-Based Steering of Ensembl...
收藏 引用
7th IEEE/ACM workshop on machine learning in high performance computing environments (mlhpc)
作者: Ward, Logan Sivaraman, Ganesh Pauloski, J. Gregory Babuji, Yadu Chard, Ryan Dandu, Naveen Redfern, Paul C. Assary, Rajeev S. Chard, Kyle Curtiss, Larry A. Thakur, Rajeev Foster, Ian Argonne Natl Lab Data Sci & Learning Div Lemont IL 60439 USA Univ Chicago Dept Comp Sci Chicago IL 60637 USA Univ Chicago Joint Ctr Energy Storage Res Chicago IL 60637 USA
Scientific applications that involve simulation ensembles can be accelerated greatly by using experiment design methods to select the best simulations to perform. Methods that use machine learning (ML) to create proxy... 详细信息
来源: 评论