咨询与建议

限定检索结果

文献类型

  • 113 篇 会议
  • 18 篇 期刊文献
  • 1 篇 学位论文

馆藏范围

  • 132 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 83 篇 工学
    • 79 篇 计算机科学与技术...
    • 33 篇 软件工程
    • 11 篇 控制科学与工程
    • 9 篇 电气工程
    • 5 篇 信息与通信工程
    • 4 篇 生物医学工程(可授...
    • 3 篇 机械工程
    • 3 篇 土木工程
    • 3 篇 生物工程
    • 2 篇 光学工程
    • 2 篇 电子科学与技术(可...
    • 2 篇 建筑学
    • 2 篇 石油与天然气工程
  • 14 篇 理学
    • 7 篇 数学
    • 4 篇 生物学
    • 3 篇 系统科学
    • 2 篇 物理学
    • 2 篇 统计学(可授理学、...
    • 1 篇 化学
    • 1 篇 地质学
  • 14 篇 管理学
    • 10 篇 管理科学与工程(可...
    • 4 篇 图书情报与档案管...
    • 2 篇 工商管理
  • 4 篇 医学
    • 4 篇 临床医学
    • 2 篇 基础医学(可授医学...
    • 2 篇 药学(可授医学、理...
    • 2 篇 特种医学
    • 2 篇 医学技术(可授医学...
  • 3 篇 教育学
    • 3 篇 教育学
  • 2 篇 农学
  • 1 篇 法学
    • 1 篇 社会学

主题

  • 23 篇 machine learning
  • 14 篇 training
  • 12 篇 deep learning
  • 12 篇 high performance...
  • 10 篇 conferences
  • 7 篇 machine learning...
  • 6 篇 scalability
  • 4 篇 reinforcement le...
  • 4 篇 data mining
  • 4 篇 computational mo...
  • 4 篇 hpc
  • 4 篇 cloud computing
  • 3 篇 runtime
  • 3 篇 supercomputers
  • 3 篇 ethics
  • 3 篇 smart environmen...
  • 3 篇 bayesian optimiz...
  • 3 篇 high-performance...
  • 3 篇 visualization
  • 3 篇 computers

机构

  • 3 篇 offenburg univ i...
  • 2 篇 fraunhofer itwm ...
  • 2 篇 fraunhofer ctr m...
  • 2 篇 oak ridge nation...
  • 2 篇 argonne natl lab...
  • 2 篇 pacific northwes...
  • 2 篇 nvidia nice
  • 2 篇 intel corp santa...
  • 2 篇 fraunhofer itwm ...
  • 2 篇 lawrence livermo...
  • 2 篇 fraunhofer cente...
  • 2 篇 competence cente...
  • 2 篇 lawrence berkele...
  • 2 篇 institute for ma...
  • 1 篇 fraunhofer itwm ...
  • 1 篇 science and engi...
  • 1 篇 college of compu...
  • 1 篇 rocketml inc bea...
  • 1 篇 korea adv inst s...
  • 1 篇 ahmanson-lovelac...

作者

  • 5 篇 keuper janis
  • 4 篇 lim seung-hwan
  • 3 篇 pfreundt franz-j...
  • 3 篇 farrell steven
  • 3 篇 janis keuper
  • 2 篇 carrera david
  • 2 篇 gerofi balazs
  • 2 篇 gauger nicolas r...
  • 2 篇 nicolae bogdan
  • 2 篇 patton robert m.
  • 2 篇 srivastava ajite...
  • 2 篇 arjunan pandaras...
  • 2 篇 bogdan nicolae
  • 2 篇 young steven r.
  • 2 篇 nicolas r. gauge...
  • 2 篇 ibrahim khaled z...
  • 2 篇 adavani santi
  • 2 篇 emani murali
  • 2 篇 shen xipeng
  • 2 篇 ganapathysubrama...

语言

  • 129 篇 英文
  • 3 篇 其他
检索条件"任意字段=Workshop on Machine Learning in High-Performance Computing Environments, MLHPC 2015"
132 条 记 录,以下是91-100 订阅
排序:
Topology-Aware GPU Scheduling for learning Workloads in Cloud environments  17
Topology-Aware GPU Scheduling for Learning Workloads in Clou...
收藏 引用
International Conference for high performance computing, Networking, Storage and Analysis (SC)
作者: Amaral, Marcelo Polo, Jorda Carrera, David Seelam, Seetharami Steinder, Malgorzata Univ Politecn Cataluna Barcelona Supercomp Ctr Barcelona Spain Barcelona Supercomp Ctr Barcelona Spain IBM Watson Res Ctr Yorktown Hts NY USA
Recent advances in hardware, such as systems with multiple GPUs and their availability in the cloud, are enabling deep learning in various domains including health care, autonomous vehicles, and Internet of Things. Mu... 详细信息
来源: 评论
Proceedings of mlhpc 2015: machine learning in high-performance computing environments - Held in conjunction with SC 2015: The International Conference for high performance computing, Networking, Storage and Analysis
Proceedings of MLHPC 2015: Machine Learning in High-Performa...
收藏 引用
workshop on machine learning in high-performance computing environments, mlhpc 2015
The proceedings contain 5 papers. The topics discussed include: asynchronous parallel stochastic gradient descent - a numeric core for scalable distributed machine learning algorithms;HPDBSCAN - highly parallel DBSCAN...
来源: 评论
Proceedings of WORKS 2017: 12th workshop on Workflows in Support of Large-Scale Science - Held in conjunction with SC 2017: The International Conference for high performance computing, Networking, Storage and Analysis
Proceedings of WORKS 2017: 12th Workshop on Workflows in Sup...
收藏 引用
12th workshop on Workflows in Support of Large-Scale Science, WORKS 2017 - Held in conjunction with the International Conference for high performance computing, Networking, Storage and Analysis, SC 2017
The proceedings contain 8 papers. The topics discussed include: E-HPC: a library for elastic resource management in HPC environments;on the use of burst buffers for accelerating data-intensive scientific workflows;rvG...
来源: 评论
A Scalable Parallel Q-learning Algorithm for Resource Constrained Decentralized computing environments
A Scalable Parallel Q-Learning Algorithm for Resource Constr...
收藏 引用
2nd workshop on machine learning in HPC environments (mlhpc)
作者: Camelo, Miguel Famaey, Jeroen Latre, Steven Univ Antwerp IMEC Dept Math & Comp Sci Middelheimlaan 1 B-2020 Antwerp Belgium
The Internet of Things (IoT) is more and more becoming a platform for mission critical applications with stringent requirements in terms of response time and mobility. Therefore, a centralized high performance Computi... 详细信息
来源: 评论
Behavioural analytics using process mining in on-line advertising
Behavioural analytics using process mining in on-line advert...
收藏 引用
2017 ICCBR workshops on Computational Analogy and Case-Based Reasoning, CAW 2017, Case-Based Reasoning and Deep learning, CBRDL 2017 and Process-Oriented Case-Based Reasoning, POCBR 2017, Doctoral Consortium, and Competitions, ICCBR-WS 2017
作者: Diapouli, Maria Kapetanakis, Stelios Petridis, Miltos Evans, Roger School of Computing Engineering and Mathematical Sciences University of Brighton Watts Building Lewes Road BrightonBN2 4GJ United Kingdom Department of Computing University of Middlesex United Kingdom
Online behavioural targeting is one of the most popular business strategies on the display advertising today. It is based primarily on analysing web user behavioural data with the usage of machine learning techniques ... 详细信息
来源: 评论
A Study of Complex Deep learning Networks on high performance, Neuromorphic, and Quantum Computers
A Study of Complex Deep Learning Networks on High Performanc...
收藏 引用
2nd workshop on machine learning in HPC environments (mlhpc)
作者: Potok, Thomas E. Schuman, Catherine D. Young, Steven R. Patton, Robert M. Spedalieri, Federico Liu, Jeremy Yao, Ke-Thia Rose, Garrett Chakma, Gangotree Oak Ridge Natl Lab 1 Bethel Valley Rd Oak Ridge TN 37830 USA USC Informat Sci Inst Marina Del Rey CA USA Univ Tennessee Knoxville TN USA
Current Deep learning models use highly optimized convolutional neural networks (CNN) trained on large graphical processing units (GPU)-based computers with a fairly simple layered network topology, i.e., highly conne... 详细信息
来源: 评论
A Scalable Parallel Q-learning Algorithm for Resource Constrained Decentralized computing environments
A Scalable Parallel Q-Learning Algorithm for Resource Constr...
收藏 引用
workshop on machine learning in HPC environments (mlhpc)
作者: Miguel Camelo Jeroen Famaey Steven Latré University of Antwerp-imec Antwerp Belgium
The Internet of Things (IoT) is more and more becoming a platform for mission critical applications with stringent requirements in terms of response time and mobility. Therefore, a centralized high performance Computi... 详细信息
来源: 评论
A Study of Complex Deep learning Networks on high performance, Neuromorphic, and Quantum Computers
A Study of Complex Deep Learning Networks on High Performanc...
收藏 引用
workshop on machine learning in HPC environments (mlhpc)
作者: Thomas E. Potok Catherine D. Schuman Steven R. Young Robert M. Patton Federico Spedalieri Jeremy Liu Ke-Thia Yao Garrett Rose Gangotree Chakma Oak Ridge National Laboratory USC Information Sciences Institute Marina del Rey CA USA University of Tennessee Knoxville TN USA
Current Deep learning models use highly optimized convolutional neural networks (CNN) trained on large graphical processing units (GPU)-based computers with a fairly simple layered network topology, i.e., highly conne... 详细信息
来源: 评论
An Adaptive Resource Provisioning Method Using Job History learning Technique in Hybrid Infrastructure  1
An Adaptive Resource Provisioning Method Using Job History L...
收藏 引用
1st IEEE International workshop on Foundations and Applications of Self-* Systems (FAS-W)
作者: Choi, Jieun Kim, Yoonhee Sookmyung Womens Univ Dept Comp Sci Seoul South Korea
Cloud computing technology enables scientists to dynamically expand their environments for scientific experiments. However, to maximize performance and satisfy user requirements it is difficult to quickly provide hybr... 详细信息
来源: 评论
Asynchronous parallel stochastic gradient descent: A numeric core for scalable distributed machine learning algorithms
Asynchronous parallel stochastic gradient descent: A numeric...
收藏 引用
workshop on machine learning in high-performance computing environments, mlhpc 2015
作者: Keuper, Janis Pfreundt, Franz-Josef Fraunhofer ITWM Competence Center High Performance Computing Kaiserslautern Germany
The implementation of a vast majority of machine learning (ML) algorithms boils down to solving a numerical optimization problem. In this context, Stochastic Gradient Descent (SGD) methods have long proven to provide ... 详细信息
来源: 评论