咨询与建议

限定检索结果

文献类型

  • 113 篇 会议
  • 18 篇 期刊文献
  • 1 篇 学位论文

馆藏范围

  • 132 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 83 篇 工学
    • 79 篇 计算机科学与技术...
    • 33 篇 软件工程
    • 11 篇 控制科学与工程
    • 9 篇 电气工程
    • 5 篇 信息与通信工程
    • 4 篇 生物医学工程(可授...
    • 3 篇 机械工程
    • 3 篇 土木工程
    • 3 篇 生物工程
    • 2 篇 光学工程
    • 2 篇 电子科学与技术(可...
    • 2 篇 建筑学
    • 2 篇 石油与天然气工程
  • 14 篇 理学
    • 7 篇 数学
    • 4 篇 生物学
    • 3 篇 系统科学
    • 2 篇 物理学
    • 2 篇 统计学(可授理学、...
    • 1 篇 化学
    • 1 篇 地质学
  • 14 篇 管理学
    • 10 篇 管理科学与工程(可...
    • 4 篇 图书情报与档案管...
    • 2 篇 工商管理
  • 4 篇 医学
    • 4 篇 临床医学
    • 2 篇 基础医学(可授医学...
    • 2 篇 药学(可授医学、理...
    • 2 篇 特种医学
    • 2 篇 医学技术(可授医学...
  • 3 篇 教育学
    • 3 篇 教育学
  • 2 篇 农学
  • 1 篇 法学
    • 1 篇 社会学

主题

  • 23 篇 machine learning
  • 14 篇 training
  • 12 篇 deep learning
  • 12 篇 high performance...
  • 10 篇 conferences
  • 7 篇 machine learning...
  • 6 篇 scalability
  • 4 篇 reinforcement le...
  • 4 篇 data mining
  • 4 篇 computational mo...
  • 4 篇 hpc
  • 4 篇 cloud computing
  • 3 篇 runtime
  • 3 篇 supercomputers
  • 3 篇 ethics
  • 3 篇 smart environmen...
  • 3 篇 bayesian optimiz...
  • 3 篇 high-performance...
  • 3 篇 visualization
  • 3 篇 computers

机构

  • 3 篇 offenburg univ i...
  • 2 篇 fraunhofer itwm ...
  • 2 篇 fraunhofer ctr m...
  • 2 篇 oak ridge nation...
  • 2 篇 argonne natl lab...
  • 2 篇 pacific northwes...
  • 2 篇 nvidia nice
  • 2 篇 intel corp santa...
  • 2 篇 fraunhofer itwm ...
  • 2 篇 lawrence livermo...
  • 2 篇 fraunhofer cente...
  • 2 篇 competence cente...
  • 2 篇 lawrence berkele...
  • 2 篇 institute for ma...
  • 1 篇 fraunhofer itwm ...
  • 1 篇 science and engi...
  • 1 篇 college of compu...
  • 1 篇 rocketml inc bea...
  • 1 篇 korea adv inst s...
  • 1 篇 ahmanson-lovelac...

作者

  • 5 篇 keuper janis
  • 4 篇 lim seung-hwan
  • 3 篇 pfreundt franz-j...
  • 3 篇 farrell steven
  • 3 篇 janis keuper
  • 2 篇 carrera david
  • 2 篇 gerofi balazs
  • 2 篇 gauger nicolas r...
  • 2 篇 nicolae bogdan
  • 2 篇 patton robert m.
  • 2 篇 srivastava ajite...
  • 2 篇 arjunan pandaras...
  • 2 篇 bogdan nicolae
  • 2 篇 young steven r.
  • 2 篇 nicolas r. gauge...
  • 2 篇 ibrahim khaled z...
  • 2 篇 adavani santi
  • 2 篇 emani murali
  • 2 篇 shen xipeng
  • 2 篇 ganapathysubrama...

语言

  • 129 篇 英文
  • 3 篇 其他
检索条件"任意字段=Workshop on Machine Learning in High-Performance Computing Environments, MLHPC 2015"
132 条 记 录,以下是51-60 订阅
排序:
EventGraD: Event-Triggered Communication in Parallel Stochastic Gradient Descent
EventGraD: Event-Triggered Communication in Parallel Stochas...
收藏 引用
IEEE/ACM workshop on machine learning in high performance computing environments (mlhpc)
作者: Soumyadip Ghosh Vijay Gupta University of Notre Dame
Communication in parallel systems consumes significant amount of time and energy which often turns out to be a bottleneck in distributed machine learning. In this paper, we present EventGraD - an algorithm with event-... 详细信息
来源: 评论
Metaoptimization on a Distributed System for Deep Reinforcement learning  5
Metaoptimization on a Distributed System for Deep Reinforcem...
收藏 引用
5th IEEE/ACM workshop on machine learning in high performance computing environments (mlhpc)
作者: Heinrich, Greg Frosio, Iuri NVIDIA Nice France NVIDIA Santa Clara CA USA
Training intelligent agents through reinforcement learning (RL) is a notoriously unstable procedure. Massive parallelization on GPUs and distributed systems has been exploited to generate a large amount of training ex... 详细信息
来源: 评论
How Good Is Your Scientific Data Generative Model?
How Good Is Your Scientific Data Generative Model?
收藏 引用
IEEE/ACM workshop on machine learning in high performance computing environments (mlhpc)
作者: Yuxin Yang Ben Gremillion Xitong Zhang Youzuo Lin Brendt Wohlberg Qiang Guan Los Alamos National Laboratory Kent State University The University of Texas at Austin Science and Engineering Michigan State University
Nowadays, leveraging data augmentation methods on helping resolving scientific problems becomes prevailing. And many scientific problems benefit from data augmentation methods build with deep generative models. Yet du... 详细信息
来源: 评论
GradVis: Visualization and Second Order Analysis of Optimization Surfaces during the Training of Deep Neural Networks  5
GradVis: Visualization and Second Order Analysis of Optimiza...
收藏 引用
5th IEEE/ACM workshop on machine learning in high performance computing environments (mlhpc)
作者: Chatzimichailidis, Avraam Pfreundt, Franz-Josef Gauger, Nicolas R. Keuper, Janis Fraunhofer ITWM Competence Ctr High Performance Comp Kaiserslautern Germany Fraunhofer Ctr Machine Learning Berlin Germany TU Kaiserslautern Chair Sci Comp Kaiserslautern Germany Offenburg Univ Inst Machine Learning & Analyt Offenburg Germany
Current training methods for deep neural networks boil down to very high dimensional and non-convex optimization problems which are usually solved by a wide range of stochastic gradient descent methods. While these ap... 详细信息
来源: 评论
A Benders Decomposition Approach to Correlation Clustering
A Benders Decomposition Approach to Correlation Clustering
收藏 引用
IEEE/ACM workshop on machine learning in high performance computing environments (mlhpc)
作者: Jovita Lukasik Margret Keuper Maneesh Singh Julian Yarkony Data and Web Science Group University of Mannheim Germany Verisk Jersey City New Jersey USA
We tackle the problem of graph partitioning for image segmentation using correlation clustering (CC), which we treat as an integer linear program (ILP). We reformulate optimization in the ILP so as to admit efficient ... 详细信息
来源: 评论
Reinforcement learning-Based Solution to Power Grid Planning and Operation Under Uncertainties
Reinforcement Learning-Based Solution to Power Grid Planning...
收藏 引用
IEEE/ACM workshop on machine learning in high performance computing environments (mlhpc)
作者: Xiumin Shang Lin Ye Jing Zhang Jingping Yang Jianping Xu Qin Lyu Ruisheng Diao GEIRI North America San Jose CA USA Zhejiang Electric Power Co. Hangzhou China Jinhua Electric Power Co. Jinhua China
With the ever-increasing stochastic and dynamic behavior observed in today's bulk power systems, securely and economically planning future operational scenarios that meet all reliability standards under uncertaint... 详细信息
来源: 评论
Scalable Hyperparameter Optimization with Lazy Gaussian Processes  5
Scalable Hyperparameter Optimization with Lazy Gaussian Proc...
收藏 引用
5th IEEE/ACM workshop on machine learning in high performance computing environments (mlhpc)
作者: Ram, Raju Mueller, Sabine Pfreundt, Franz-Josef Gauger, Nicolas R. Keuper, Janis Fraunhofer ITWM Competence Ctr High Performance Comp Kaiserslautern Germany Fraunhofer Ctr Machine Learning Berlin Germany TU Kaiserslautern Sci Comp Grp Kaiserslautern Germany Offenburg Univ Inst Machine Learning & Analyt Offenburg Germany
Most machine learning methods require careful selection of hyper-parameters in order to train a high performing model with good generalization abilities. Hence, several automatic selection algorithms have been introdu... 详细信息
来源: 评论
Automatic Particle Trajectory Classification in Plasma Simulations
Automatic Particle Trajectory Classification in Plasma Simul...
收藏 引用
IEEE/ACM workshop on machine learning in high performance computing environments (mlhpc)
作者: Stefano Markidis Ivy Peng Artur Podobas Itthinat Jongsuebchoke Gabriel Bengtsson Pawel Herman KTH Royal Institute of Technology Stockholm Sweden Lawrence Livermore National Laboratory Livermore CA USA
Numerical simulations of plasma flows are crucial for advancing our understanding of microscopic processes that drive the global plasma dynamics in fusion devices, space, and astrophysical systems. Identifying and cla... 详细信息
来源: 评论
The Cell Tracking Challenge: 10 years of objective benchmarking
收藏 引用
NATURE METHODS 2023年 第7期20卷 1010-+页
作者: Maska, Martin Ulman, Vladimir Delgado-Rodriguez, Pablo Gomez-de-Mariscal, Estibaliz Necasova, Tereza Pena, Fidel A. Guerrero Ren, Tsang Ing Meyerowitz, Elliot M. Scherr, Tim Loeffler, Katharina Mikut, Ralf Guo, Tianqi Wang, Yin Allebach, Jan P. Bao, Rina Al-Shakarji, Noor M. Rahmon, Gani Toubal, Imad Eddine Palaniappan, Kannappan Lux, Filip Matula, Petr Sugawara, Ko Magnusson, Klas E. G. Aho, Layton Cohen, Andrew R. Arbelle, Assaf Ben-Haim, Tal Raviv, Tammy Riklin Isensee, Fabian Jaeger, Paul F. Maier-Hein, Klaus H. Zhu, Yanming Ederra, Cristina Urbiola, Ainhoa Meijering, Erik Cunha, Alexandre Munoz-Barrutia, Arrate Kozubek, Michal Ortiz-de-Solorzano, Carlos Masaryk Univ Fac Informat Ctr Biomed Image Anal Brno Czech Republic VSB Tech Univ Ostrava IT4Innovat Natl Supercomp Ctr Ostrava Czech Republic Univ Carlos III Madrid Bioengn Dept Madrid Spain Inst Invest Sanitaria Gregorio Maranon Madrid Spain Inst Gulbenkian Ciencias Opt Cell Biol Oeiras Portugal Univ Fed Pernambuco Ctr Informat Recife PE Brazil CALTECH Beckman Inst Ctr Adv Methods Biol Image Anal Pasadena CA USA CALTECH Div Biol & Biol Engn Pasadena CA USA CALTECH Howard Hughes Med Inst Pasadena CA USA Karlsruhe Inst Technol Inst Automat & Appl Informat Eggenstein Leopoldshafen Germany Purdue Univ Elmore Family Sch Elect & Comp Engn W Lafayette IN USA Boston Childrens Hosp Boston MA USA Harvard Med Sch Boston MA USA Univ Missouri Dept Elect Engn & Comp Sci CIVA Lab Columbia MO USA Ecole Normale Super Lyon Inst Genom Fonct Lyon IGFL Lyon France Ctr Natl Rech Sci CNRS Paris France Raysearch Labs AB Stockholm Sweden Drexel Univ Dept Elect & Comp Engn Philadelphia PA USA Ben Gurion Univ Negev Sch Elect & Comp Engn Beer Sheva Israel German Canc Res Ctr Div Med Image Comp Heidelberg Germany German Canc Res Ctr Helmholtz Imaging Heidelberg Germany German Canc Res Ctr Interact Machine Learning Grp Heidelberg Germany Heidelberg Univ Hosp Dept Radiat Oncol Pattern Anal & Learning Grp Heidelberg Germany Univ New South Wales Sch Comp Sci & Engn Sydney NSW Australia Griffith Univ Nathan Qld Australia Univ Navarra Ctr Appl Med Res Biomed Engn Program Pamplona Spain Univ Navarra Ctr Appl Med Res Ciberonc Pamplona Spain
The Cell Tracking Challenge is an ongoing benchmarking initiative that has become a reference in cell segmentation and tracking algorithm development. Here, we present a significant number of improvements introduced i... 详细信息
来源: 评论
Predictions of Steady and Unsteady Flows using machine-learned Surrogate Models
Predictions of Steady and Unsteady Flows using Machine-learn...
收藏 引用
IEEE/ACM workshop on machine learning in high performance computing environments (mlhpc)
作者: Shanti Bhushan Greg W. Burgreen Joshua L. Bowman Ian D. Dettwiller Wesley Brewer Mississippi State University Starkville MS USA Engineer Research and Development Center (ERDC) Vicksburg MS USA DoD HPCMP PET/GDIT Vicksburg MS USA
The applicability of computational fluid dynamics (CFD) based design tools depend on the accuracy and complexity of the physical models, for example turbulence models, which remains an unsolved problem in physics, and... 详细信息
来源: 评论