咨询与建议

限定检索结果

文献类型

  • 113 篇 会议
  • 18 篇 期刊文献
  • 1 篇 学位论文

馆藏范围

  • 132 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 83 篇 工学
    • 79 篇 计算机科学与技术...
    • 33 篇 软件工程
    • 11 篇 控制科学与工程
    • 9 篇 电气工程
    • 5 篇 信息与通信工程
    • 4 篇 生物医学工程(可授...
    • 3 篇 机械工程
    • 3 篇 土木工程
    • 3 篇 生物工程
    • 2 篇 光学工程
    • 2 篇 电子科学与技术(可...
    • 2 篇 建筑学
    • 2 篇 石油与天然气工程
  • 14 篇 理学
    • 7 篇 数学
    • 4 篇 生物学
    • 3 篇 系统科学
    • 2 篇 物理学
    • 2 篇 统计学(可授理学、...
    • 1 篇 化学
    • 1 篇 地质学
  • 14 篇 管理学
    • 10 篇 管理科学与工程(可...
    • 4 篇 图书情报与档案管...
    • 2 篇 工商管理
  • 4 篇 医学
    • 4 篇 临床医学
    • 2 篇 基础医学(可授医学...
    • 2 篇 药学(可授医学、理...
    • 2 篇 特种医学
    • 2 篇 医学技术(可授医学...
  • 3 篇 教育学
    • 3 篇 教育学
  • 2 篇 农学
  • 1 篇 法学
    • 1 篇 社会学

主题

  • 23 篇 machine learning
  • 14 篇 training
  • 12 篇 deep learning
  • 12 篇 high performance...
  • 10 篇 conferences
  • 7 篇 machine learning...
  • 6 篇 scalability
  • 4 篇 reinforcement le...
  • 4 篇 data mining
  • 4 篇 computational mo...
  • 4 篇 hpc
  • 4 篇 cloud computing
  • 3 篇 runtime
  • 3 篇 supercomputers
  • 3 篇 ethics
  • 3 篇 smart environmen...
  • 3 篇 bayesian optimiz...
  • 3 篇 high-performance...
  • 3 篇 visualization
  • 3 篇 computers

机构

  • 3 篇 offenburg univ i...
  • 2 篇 fraunhofer itwm ...
  • 2 篇 fraunhofer ctr m...
  • 2 篇 oak ridge nation...
  • 2 篇 argonne natl lab...
  • 2 篇 pacific northwes...
  • 2 篇 nvidia nice
  • 2 篇 intel corp santa...
  • 2 篇 fraunhofer itwm ...
  • 2 篇 lawrence livermo...
  • 2 篇 fraunhofer cente...
  • 2 篇 competence cente...
  • 2 篇 lawrence berkele...
  • 2 篇 institute for ma...
  • 1 篇 fraunhofer itwm ...
  • 1 篇 science and engi...
  • 1 篇 college of compu...
  • 1 篇 rocketml inc bea...
  • 1 篇 korea adv inst s...
  • 1 篇 ahmanson-lovelac...

作者

  • 5 篇 keuper janis
  • 4 篇 lim seung-hwan
  • 3 篇 pfreundt franz-j...
  • 3 篇 farrell steven
  • 3 篇 janis keuper
  • 2 篇 carrera david
  • 2 篇 gerofi balazs
  • 2 篇 gauger nicolas r...
  • 2 篇 nicolae bogdan
  • 2 篇 patton robert m.
  • 2 篇 srivastava ajite...
  • 2 篇 arjunan pandaras...
  • 2 篇 bogdan nicolae
  • 2 篇 young steven r.
  • 2 篇 nicolas r. gauge...
  • 2 篇 ibrahim khaled z...
  • 2 篇 adavani santi
  • 2 篇 emani murali
  • 2 篇 shen xipeng
  • 2 篇 ganapathysubrama...

语言

  • 129 篇 英文
  • 3 篇 其他
检索条件"任意字段=Workshop on Machine Learning in High-Performance Computing Environments, MLHPC 2015"
132 条 记 录,以下是71-80 订阅
排序:
Compiler Abstractions and Runtime for Extreme-scale SAR and CFD Workloads  5
Compiler Abstractions and Runtime for Extreme-scale SAR and ...
收藏 引用
IEEE/ACM 5th International workshop on Extreme Scale Programming Models and Middleware (ESPM2)
作者: Imes, Connor Colin, Alexei Zhang, Naifeng Srivastava, Ajitesh Prasanna, Viktor Walters, John Paul USC Informat Sci Inst Los Angeles CA 90007 USA Univ Southern Calif Los Angeles CA 90007 USA
As HPC progresses toward exascale, writing applications that are highly efficient, portable, and support programmer productivity is becoming more challenging than ever. The growing scale, diversity, and heterogeneity ... 详细信息
来源: 评论
3rd workshop on Education for high performance computing (EduHiPC - 2021)
3rd Workshop on Education for High Performance Computing (Ed...
收藏 引用
IEEE International Conference on high performance computing workshops (HiPCW)
作者: Sheikh Ghafoor Sushil K. Prasad
high performance computing (HPC) and, in general, Parallel and Distributed computing (PDC) is ubiquitous. Every computing device, from a smartphone to a supercomputer, relies on parallel processing. Compute clusters o... 详细信息
来源: 评论
Sequence-to-sequence models for workload interference prediction on batch processing datacenters
收藏 引用
FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE 2020年 110卷 155-166页
作者: Buchaca, David Marcual, Joan LLuis Berral, Josep Carrera, David BSC C Jordi Girona 1-3 Barcelona 08034 Spain UPC BarcelonaTECH Barcelona Spain
Co-scheduling of jobs in data centers is a challenging scenario where jobs can compete for resources, leading to severe slowdowns or failed executions. Efficient job placement on environments where resources are share... 详细信息
来源: 评论
Message from the workshop Chair
Message from the Workshop Chair
收藏 引用
IEEE/ACM workshop on machine learning in high performance computing environments (mlhpc)
Presents the introductory welcome message from the conference proceedings. May include the conference officers' congratulations to all involved with the conference event and publication of the proceedings record.
来源: 评论
Metaoptimization on a Distributed System for Deep Reinforcement learning
Metaoptimization on a Distributed System for Deep Reinforcem...
收藏 引用
IEEE/ACM workshop on machine learning in high performance computing environments (mlhpc)
作者: Greg Heinrich Iuri Frosio NVIDIA Nice France NVIDIA Santa Clara USA
Training intelligent agents through reinforcement learning (RL) is a notoriously unstable procedure. Massive parallelization on GPUs and distributed systems has been exploited to generate a large amount of training ex... 详细信息
来源: 评论
Message from the workshop chair
Proceedings of MLHPC 2019: 5th Workshop on Machine Learning ...
收藏 引用
Proceedings of mlhpc 2019: 5th workshop on machine learning in HPC environments - Held in conjunction with SC 2019: The International Conference for high performance computing, Networking, Storage and Analysis 2019年 V页
作者: Lim, Seung-Hwan Oak Ridge National Laboratory United States
来源: 评论
Scalable Hyperparameter Optimization with Lazy Gaussian Processes
Scalable Hyperparameter Optimization with Lazy Gaussian Proc...
收藏 引用
IEEE/ACM workshop on machine learning in high performance computing environments (mlhpc)
作者: Raju Ram Sabine Müller Franz-Josef Pfreundt Nicolas R. Gauger Janis Keuper Competence Center High Performance Computing Fraunhofer ITWM Kaiserslautern Germany Scientific Computing Group TU Kaiserslautern Germany Fraunhofer ITWM Kaiserslautern Germany Fraunhofer Center Machine Learning Germany Institute for Machine Learning and Analytics Offenburg University Germany
Most machine learning methods require careful selection of hyper-parameters in order to train a high performing model with good generalization abilities. Hence, several automatic selection algorithms have been introdu... 详细信息
来源: 评论
GradVis: Visualization and Second Order Analysis of Optimization Surfaces during the Training of Deep Neural Networks
GradVis: Visualization and Second Order Analysis of Optimiza...
收藏 引用
IEEE/ACM workshop on machine learning in high performance computing environments (mlhpc)
作者: Avraam Chatzimichailidis Janis Keuper Franz-Josef Pfreundt Nicolas R. Gauger Competence Center High Performance Computing Fraunhofer ITWM Kaiserslautern Germany Chair for Scientific Computing TU Kaiserslautern Kaiserslautern Germany Institute for Machine Learning and Analytics Offenburg University Germany Fraunhofer Center Machine Learning Germany
Current training methods for deep neural networks boil down to very high dimensional and non-convex optimization problems which are usually solved by a wide range of stochastic gradient descent methods. While these ap... 详细信息
来源: 评论
Python Workflows on HPC Systems
Python Workflows on HPC Systems
收藏 引用
workshop on Python for high-performance and Scientific computing (PyHPC)
作者: Dominik Straßel Philipp Reusch Janis Keuper Fraunhofer ITWM Kaiserslautern Germany Offenburg University Germany
The recent successes and wide spread application of compute intensive machine learning and data analytics methods have been boosting the usage of the Python programming language on HPC systems. While Python provides m... 详细信息
来源: 评论
Understanding Scalability and Fine-Grain Parallelism of Synchronous Data Parallel Training
Understanding Scalability and Fine-Grain Parallelism of Sync...
收藏 引用
IEEE/ACM workshop on machine learning in high performance computing environments (mlhpc)
作者: Jiali Li Bogdan Nicolae Justin Wozniak George Bosilca The University of Tennessee Knoxville USA Argonne National Laboratory USA
In the age of big data, deep learning has emerged as a powerful tool to extract insight and exploit its value, both in industry and scientific applications. With increasing complexity of learning models and amounts of... 详细信息
来源: 评论