咨询与建议

限定检索结果

文献类型

  • 120 篇 会议

馆藏范围

  • 120 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 66 篇 工学
    • 65 篇 计算机科学与技术...
    • 63 篇 软件工程
    • 10 篇 农业工程
    • 5 篇 机械工程
    • 4 篇 信息与通信工程
    • 2 篇 控制科学与工程
    • 2 篇 化学工程与技术
    • 1 篇 材料科学与工程(可...
  • 20 篇 管理学
    • 16 篇 图书情报与档案管...
    • 4 篇 管理科学与工程(可...
  • 18 篇 理学
    • 8 篇 数学
    • 7 篇 物理学
    • 2 篇 化学
    • 2 篇 系统科学
    • 1 篇 统计学(可授理学、...
  • 10 篇 农学
    • 10 篇 作物学

主题

  • 25 篇 machine translat...
  • 9 篇 semantics
  • 8 篇 computer aided l...
  • 7 篇 syntactics
  • 6 篇 translation proc...
  • 6 篇 translations
  • 5 篇 translation
  • 4 篇 alignment
  • 4 篇 forestry
  • 3 篇 translation (lan...
  • 3 篇 belgo-luxembourg...
  • 2 篇 mt
  • 2 篇 translation syst...
  • 2 篇 syntax
  • 2 篇 surface mount te...
  • 2 篇 decoding
  • 2 篇 english
  • 2 篇 rule
  • 2 篇 language
  • 2 篇 adjudication

机构

  • 7 篇 carnegie mellon ...
  • 5 篇 language technol...
  • 3 篇 rwth aachen univ...
  • 2 篇 université de mo...
  • 2 篇 linguistic model...
  • 2 篇 harvard universi...
  • 2 篇 linguistics and ...
  • 2 篇 universidad de c...
  • 2 篇 university of po...
  • 2 篇 ibm t. j. watson...
  • 2 篇 jss academy of t...
  • 2 篇 the graduate uni...
  • 2 篇 unit for natural...
  • 2 篇 hkust human lang...
  • 2 篇 jacobs universit...
  • 2 篇 school of engine...
  • 2 篇 johns hopkins un...
  • 2 篇 language technol...
  • 2 篇 department of co...
  • 2 篇 department of co...

作者

  • 4 篇 lavie alon
  • 4 篇 alon lavie
  • 4 篇 dekai wu
  • 4 篇 ney hermann
  • 3 篇 hanneman greg
  • 3 篇 greg hanneman
  • 3 篇 zhao tiejun
  • 2 篇 sudoh katsuhito
  • 2 篇 stuart m. shiebe...
  • 2 篇 vogel stephan
  • 2 篇 stephan vogel
  • 2 篇 bahdanau dzmitry
  • 2 篇 bangalore sriniv...
  • 2 篇 katsuhito sudoh
  • 2 篇 niyu ge
  • 2 篇 hermann ney
  • 2 篇 bing xiang
  • 2 篇 masaaki nagata
  • 2 篇 bengio yoshua
  • 2 篇 attardi giuseppe

语言

  • 120 篇 英文
检索条件"任意字段=Workshop on Syntax and Structure in Statistical Translation"
120 条 记 录,以下是11-20 订阅
排序:
translation reranking using source phrase dependency features  9
Translation reranking using source phrase dependency feature...
收藏 引用
9th workshop on syntax, Semantics and structure in statistical translation, SSST 2015 at the NAACL HLT 2015
作者: Miceli-Barone, Antonio Valerio Dipartimento di Informatica Largo B. Pontecorvo 3 Pisa56127 Italy
We describe a N-best reranking model based on features that combine source-side dependency syntactical information and segmentation and alignment information. Specifically, we consider segmentation-aware"phrase d...
来源: 评论
Rule-based syntactic preprocessing for syntax-based machine translation  8
Rule-based syntactic preprocessing for syntax-based machine ...
收藏 引用
8th workshop on syntax, Semantics and structure in statistical translation, SSST 2014
作者: Hatakoshi, Yuto Neubig, Graham Sakti, Sakriani Toda, Tomoki Nakamura, Satoshi Nara Institute of Science and Technology Graduate School of Information Science Takayama Nara Ikoma630-0192 Japan
Several preprocessing techniques using syntactic information and linguistically motivated rules have been proposed to improve the quality of phrase-based machine translation (PBMT) output. On the other hand, there has... 详细信息
来源: 评论
Machine translation as tree labeling
Machine translation as tree labeling
收藏 引用
2007 AMTA workshop on syntax and structure in statistical translation, SSST 2007 at the 2007 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2007
作者: Hopkins, Mark Kuhn, Jonas Department of Linguistics University of Potsdam Germany
We present the main ideas behind a new syntax-based machine translation system, based on reducing the machine translation task to a tree-labeling task. This tree labeling is further reduced to a sequence of decisions ... 详细信息
来源: 评论
Prior derivation models for formally syntax-based translation using linguistically syntactic parsing and tree kernels  2
Prior derivation models for formally syntax-based translatio...
收藏 引用
2nd workshop on syntax and structure in statistical translation, SSST 2008
作者: Zhou, Bowen Xiang, Bing Zhu, Xiaodan Gao, Yuqing IBM T. J. Watson Research Center Yorktown HeightsNY United States Dept. of Computer Science University of Toronto Canada
This paper presents an improved formally syntax-based SMT model, which is enriched by linguistically syntactic knowledge obtained from statistical constituent parsers. We propose a linguistically-motivated prior deriv... 详细信息
来源: 评论
syntax-driven learning of sub-sentential translation equivalents and translation rules from parsed parallel corpora  2
Syntax-driven learning of sub-sentential translation equival...
收藏 引用
2nd workshop on syntax and structure in statistical translation, SSST 2008
作者: Lavie, Alon Parlikar, Alok Ambati, Vamshi Language Technologies Institute Carnegie Mellon University PittsburghPA15213 United States
We describe a multi-step process for automatically learning reliable sub-sentential syntactic phrases that are translation equivalents of each other and syntactic translation rules between two languages. The input to ... 详细信息
来源: 评论
Extraction phenomena in synchronous tag syntax and semantics
Extraction phenomena in synchronous tag syntax and semantics
收藏 引用
2007 AMTA workshop on syntax and structure in statistical translation, SSST 2007 at the 2007 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2007
作者: Nesson, Rebecca Shieber, Stuart M. School of Engineering and Applied Sciences Harvard University CambridgeMA02138 United States
We present a proposal for the structure of noun phrases in Synchronous Tree-Adjoining Grammar (STAG) syntax and semantics that permits an elegant and uniform analysis of a variety of phenomena, including quantifier sc... 详细信息
来源: 评论
Preference grammars and soft syntactic constraints for GHKM syntax-based statistical machine translation  8
Preference grammars and soft syntactic constraints for GHKM ...
收藏 引用
8th workshop on syntax, Semantics and structure in statistical translation, SSST 2014
作者: Huck, Matthias Hoang, Hieu Koehn, Philipp School of Informatics University of Edinburgh 10 Crichton Street EdinburghEH8 9AB United Kingdom
In this work, we investigate the effectiveness of two techniques for a feature-based integration of syntactic information into GHKM string-to-tree statistical machine translation (Galley et al., 2004): (1.) Preference... 详细信息
来源: 评论
A study of translation rule classification for syntax-based statistical machine translation  3
A study of translation rule classification for syntax-based ...
收藏 引用
3rd workshop on syntax and structure in statistical translation, SSST 2009 at the 2009 Annual Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2009
作者: Jiang, Hongfei Li, Sheng Yang, Muyun Zhao, Tiejun School of Computer Science and Technology Harbin Institute of Technology
Recently, numerous statistical machine translation models which can utilize various kinds of translation rules are proposed. In these models, not only the conventional syntactic rules but also the non-syntactic rules ... 详细信息
来源: 评论
Probabilistic synchronous tree-adjoining grammars for machine translation: The argument from bilingual dictionaries
Probabilistic synchronous tree-adjoining grammars for machin...
收藏 引用
2007 AMTA workshop on syntax and structure in statistical translation, SSST 2007 at the 2007 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2007
作者: Shieber, Stuart M. School of Engineering and Applied Sciences Harvard University CambridgeMA02138 United States
We provide a conceptual basis for thinking of machine translation in terms of synchronous grammars in general, and probabilistic synchronous tree-adjoining grammars in particular. Evidence for the view is found in the... 详细信息
来源: 评论
Inductive detection of language features via clustering minimal Pairs: Toward feature-rich grammars in machine translation  2
Inductive detection of language features via clustering mini...
收藏 引用
2nd workshop on syntax and structure in statistical translation, SSST 2008
作者: Clark, Jonathan H. Frederking, Robert Levin, Lori Language Technologies Institute Carnegie Mellon University PittsburghPA15213 United States
syntax-based Machine translation systems have recently become a focus of research with much hope that they will outperform traditional Phrase-Based statistical Machine translation (PBSMT). Toward this goal, we present... 详细信息
来源: 评论