锂电池荷电状态(state of charge,SOC)的准确估计对电池安全监测与能量的高效利用具有重要意义。提出一种新的验证模型,首先对电池新一代汽车合作伙伴(PNGV)模型进行改进,考虑电池充放电的差异,加入了二极管电阻的并联网络来代替传统PNG...
详细信息
锂电池荷电状态(state of charge,SOC)的准确估计对电池安全监测与能量的高效利用具有重要意义。提出一种新的验证模型,首先对电池新一代汽车合作伙伴(PNGV)模型进行改进,考虑电池充放电的差异,加入了二极管电阻的并联网络来代替传统PNGV模型的内阻,在此基础上,增加了一个RC的并联网络来表征电池的动静态特性。以三元锂电池为研究对象,通过遗忘因子最小二乘法(forgetting factor recursive least square,FFRLS)对改进模型进行在线参数辨识,并提出了主充电、放电实验对锂电池工作特性进行仿真分析,通过FFRLS-EKF算法在DST工况下对SOC进行估算。实验结果表明,改进的2RC-PNGV模型能够较好地反映锂电池工作特性,HPPC实验的平均电压误差为0.17%,模型具有较高的精度。主充电过程SOC平均估算误差为0.957%,最大估算误差为5.03%;主放电过程SOC平均估算误差为0.807%,最大估算误差为3.38%,表明改进的2RC-PNGV模型与联合估计算法均可用于SOC实际估算。
在锂电池组提供动力的小型无人机中,对锂电池组进行准确、可靠的荷电状态估计(state of charge,SOC)尤为重要。针对传统SOC估算方法存在计算量大、估计不准确等缺点,通过对锂电池组建立Thevenin模型,提出了一种基于扩展卡尔曼滤波(Estim...
详细信息
在锂电池组提供动力的小型无人机中,对锂电池组进行准确、可靠的荷电状态估计(state of charge,SOC)尤为重要。针对传统SOC估算方法存在计算量大、估计不准确等缺点,通过对锂电池组建立Thevenin模型,提出了一种基于扩展卡尔曼滤波(Estimationkalmanfilter,EKF)算法的小型无人机锂电池组SOC实时估算方法。通过采用串联7节4Ah钴酸锂电池单体的锂电池组进行实验验证。实验表明该方法对小型无人机锂电池SOC估计误差低于4%,在误差允许范围内,基本满足了对小型无人机锂电池组SOC在线估计的需求。
暂无评论