As an emerging and promising technology, Time Sensitive Networking (TSN) can be widely used in many real-time systems such as Industrial Internet of Things (IIoT) and Cyber Physical System (CPS). TSN, while ensuring t...
As an emerging and promising technology, Time Sensitive Networking (TSN) can be widely used in many real-time systems such as Industrial Internet of Things (IIoT) and Cyber Physical System (CPS). TSN, while ensuring the bounded latency and jitter, exhibits the disadvantage of not being able to efficiently use the bandwidth resources in the guard band. In this paper, we propose an algorithm family named Packet-size Aware Shaping (PAS), which is inspired by abstracting the problem of utilizing the guard band to a classic Precedence-Constrained Knapsack Problem (PCKP). PAS works with the existing TSN standards, having achieved the goal of guaranteeing the end-to-end latency for scheduled time-sensitive applications while fully utilizing the available bandwidth in the guard band for others. Furthermore, we have proposed and implemented several hardware designs for both the current standard TSN scheduler and the programmable one. The simulation results show that the PAS family can achieve satisfying performance in maximizing the resource utilization in the guard band. The synthesis results on Xilinx Vivado show that our proposed Multi-group Push-In-First-Out (MPIFO) scheduler can achieve 100 Mpps scheduling rate for 1024 scheduling items, which is fast enough to support the high-speed TSN.
Terahertz (THz) all-dielectric metasurfaces made of high-index and low-loss resonators have attracted more and more attention due to their versatile properties. However, the all-dielectric metasurfaces in THz suffer f...
详细信息
Terahertz (THz) all-dielectric metasurfaces made of high-index and low-loss resonators have attracted more and more attention due to their versatile properties. However, the all-dielectric metasurfaces in THz suffer from limited bandwidth and low tunability. Meanwhile, they are usually fabricated on flat and rigid substrates, and consequently their applications are restricted. Here, a simple approach is proposed and experimentally demonstrated to obtain a flexible and tunable THz all-dielectric metasurface. In this metasurface, micro ceramic spheres (ZrO2) are embedded in a ferroelectric (strontium titanate) / elastomer (polydimethylsiloxane) composite. It is shown that the Mie resonances in micro ceramic spheres can be thermally and reversibly tuned resulting from the temperature dependent permittivity of the ferroelectric / PDMS composite. This metasurface characterized by flexibility and tunability is expected to have a more extensive application in active THz devices. (C) 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
Hormesis is an adaptive response of living organisms to a moderate stress. However, its biomedical implication and molecular mechanisms remain to be intensively investigated. Panaxatriol saponins (PTS) is the major bi...
Hormesis is an adaptive response of living organisms to a moderate stress. However, its biomedical implication and molecular mechanisms remain to be intensively investigated. Panaxatriol saponins (PTS) is the major bioactive components extracted from Panax notoginseng, a widely used herbal medicine for cerebrovascular diseases. This study aims to examine the hormetic and neuroprotective effects of PTS in PC12 cells and zebrafish Parkinson's disease (PD) models. Our results demonstrated that PTS stimulated PC12 cell growth by about 30% at low doses, while PTS at high doses inhibited cell growth, which is a typical hormetic effect. Moreover, we found that low dose PTS pretreatment significantly attenuated 6-OHDA-induced cytotoxicity and up-regulated PI3K/AKT/mTOR cell proliferation pathway and AMPK/SIRT1/FOXO3 cell survival pathway in PC12 cells. These results strongly suggested that neuroprotective effects of PTS may be attributable to the hormetic effect induced by PTS through activating adaptive response-related signaling pathways. Notably, low dose PTS could significantly prevent the 6-OHDA-induced dopaminergic neuron loss and improve the behavior movement deficiency in zebrafish, whereas relative high dose PTS exhibited neural toxicity, further supporting the hormetic and neuroprotective effects of PTS. This study indicates that PTS may have the potential in the development of future therapeutic medicines for PD.
High topology dynamics and intermittent connectivity in Vehicular Ad hoc Network (VANET) bring huge challenges to end-to-end communication. Existing routing protocols for MANET such as AODV and OLSR work fine under mo...
详细信息
ISBN:
(纸本)9781728125831
High topology dynamics and intermittent connectivity in Vehicular Ad hoc Network (VANET) bring huge challenges to end-to-end communication. Existing routing protocols for MANET such as AODV and OLSR work fine under modest mobility, but have a difficult time to handle frequent topology changes in VANET. This paper proposes Peeking at the Past and Present Routing ((PR)-R-3), a routing protocol that will calculate next-hops when the past forwarding is considered invalid. The nexthop calculation is based on the predicted locations of forwarder's neighbors and the packet's destination node, overcoming the inaccuracy caused by stale location information. Furthermore, we differentiate vehicles on crossroads as they have high connectivity in actual urban streets. In this way, (PR)-R-3 is able to deal with link breakages quickly and exploit new links. Simulation results show that (PR)-R-3 outperforms state-of-the-art alternatives in terms of packet delivery ratio, delay and cost, while maintaining strong scalability and robustness. We also implement (PR)-R-3 in a real vehicular testbed and the results reveal it has high connectivity on real streets.
Rho-associated protein kinase (ROCK) mediated the reorganization of the actin cytoskeleton and has been implicated in the spread and metastatic process of cancer. In this study, structure-based high-throughput virtual...
Rho-associated protein kinase (ROCK) mediated the reorganization of the actin cytoskeleton and has been implicated in the spread and metastatic process of cancer. In this study, structure-based high-throughput virtual screening was used to identify candidate compounds targeting ROCK2 from a chemical library. Moreover, high-content screening based on neurite outgrowth of SH-SY5Y cells (a human neuroblastoma cell line) was used for accelerating the identification of compounds with characteristics of ROCK2 inhibitors. The effects of bioactive ROCK2 inhibitor candidates were further validated using other bioassays including cell migration and wound healing in SH-SY5Y cells. Through the combined virtual and high-content drug screening, the compound 1,3-benzodioxol-5-yl[1-(5-isoquinolinylmethyl)-3-piperidinyl]-methanone (BIPM) was identified as a novel and potent ROCK2 inhibitor. Exposure of SH-SY5Y cells to BIPM led to significant changes in neurite length, cell migration and actin stress fibers. Further experiments demonstrated that BIPM was able to significantly inhibit phosphorylation of cofilin, a regulatory protein of actin cytoskeleton. These results suggest that BIPM could be considered as a promising scaffold for the further development of ROCK2 inhibitors for anti-cancer metastasis.
暂无评论