The giant panda (Ailuropoda melanoleuca) is currently threatened by habitat loss, fragmentation, and human persecution. Its dietary specialization, habitat isolation, and reproductive constraints have led to a percept...
详细信息
The giant panda (Ailuropoda melanoleuca) is currently threatened by habitat loss, fragmentation, and human persecution. Its dietary specialization, habitat isolation, and reproductive constraints have led to a perception that this is a species at an "evolutionary dead end," destined for deterministic extinction in the modem world. Here we examine this perception by a comprehensive investigation of its genetic diversity, population structure, and demographic history across its geographic range. We present analysis of 655 base pairs of mitochondrial (mt) control region (CR) DNA and 10 microsatellite loci for samples from its 5 extant mountain populations (Qinling, Minshan, Qionglai, Liangshan, and Lesser Xiangling). Surprisingly, extant populations display average to high levels of CR and microsatellite diversity compared with other bear species. Genetic differentiation among populations was significant in most cases but was markedly higher between Qinling and the other mountain ranges, suggesting, minimally, that the Qinling population should comprise a separate management unit for conservation purposes. Recent demographic inference using in icrosate I lite markers demonstrated a clear genetic signature for population decline starting several thousands years ago or even futher back in the past, and being accelerated and enhanced by the expansion of human populations. Importantly, these data suggest that the panda is not a species at an evolutionary "dead end," but in common with other large carnivores, has suffered demographically at the hands of human pressure. Conservation strategies should therefore focus on the restoration arid protection of wild habitat and the maintenance of the currently substantial regional genetic diversity, through active management of disconnected populations.
Rhinopithecus bieti, the Yunnan snub-nosed monkey, is the nonhuman primate with the highest altitudinal distribution and is also one of the 25 most globally endangered primate species. Currently, R. bieti is found in ...
详细信息
Rhinopithecus bieti, the Yunnan snub-nosed monkey, is the nonhuman primate with the highest altitudinal distribution and is also one of the 25 most globally endangered primate species. Currently, R. bieti is found in forests between 3000 and 4500 m above sea level, within a narrow area on the Tibetan Plateau between the Yangtze and Mekong rivers, where it is suffering from loss of habitat and shrinking population size (similar to 1500). To assess the genetic diversity within this species, its population structure and to infer its evolutionary history, we sequenced 401 bp of the hypervariable I (HVI) segment from the mitochondrial DNA control region (CR) for 157 individuals from 11 remnant patches throughout the fragmented distribution area. Fifty-two variable sites were observed and 30 haplotypes were defined. Compared with other primate species, R. bieti cannot be regarded as a taxon with low genetic diversity. Phylogenetic analysis partitioned haplotypes into two divergent haplogroups (A and B). Haplotypes from the two mitochondrial clades were found to be mixed in some patches although the distribution of haplotypes displayed local homogeneity, implying a strong population structure within R. bieti. Analysis of molecular variance detected significant differences among the different geographical regions, suggesting that R. bieti should be separated into three management units (MUs) for conservation. Based on our results, it can be hypothesized that the genetic history of R. bieti includes an initial, presumably allopatric divergence between clades A and B 1.0-0.7 million years ago (Ma), which might have been caused by the Late Cenozoic uplift of the Tibetan Plateau, secondary contact after this divergence as a result of a population expansion 0.16-0.05 Ma, and population reduction and habitat fragmentation in the very recent past.
The golden monkey (Rhinopithecus roxellana) is one of the most endangered primate species due to its dramatically shrinking distribution during the past 400 years. Its populations are restricted to three isolated regi...
详细信息
The golden monkey (Rhinopithecus roxellana) is one of the most endangered primate species due to its dramatically shrinking distribution during the past 400 years. Its populations are restricted to three isolated regions, Qinglin (QL), Sichuan/Gansu (SG), and Shennongjia (SNJ) in China. As with other snub-nosed monkeys in China and Vietnam, the biology and evolution of this species is still poorly known. To assess genetic differentiation and explore the relationships among populations of golden monkeys from different geographic locations, 379bp of mitochondrial DNA control region (CR) hypervariable segment I (HVI) was studied from 60 individuals. Twelve haplotypes were identified from seven populations within the three regions. Haplotype diversity was high (0.845), whereas nucleotide diversity among all haplotypes was low (0.0331). The most recent common ancestor (TMRCA) among mtDNA haplotypes was estimated to have lived approximately 0.48-0.32 million years ago. None of the haplotypes is shared among any of the three regions. Phylogenetic analysis and AMOVA revealed clear and significant phylogeographic structure between the three regions. However, only SG contained haplotypes of the two main clades, indicating either incomplete random sorting of haplotypes or a complex history with phases of population subdivisions and merging of populations. The phylogeographic structure implies that R. roxellana should be regarded as separate management units (MUs) for each of the three regions. It is likely that recent phylogeographic history has shaped the pattern of geneticdifferentiation observed in the golden monkey and that its populations have suffered significant demographic fluctuation.
Sika deer (Cervus nippon) is a cervid endemic to mainland and insular Asia and endan-gered. We analyzed variation in the mitochondrial DNA (mtDNA) control region for four subspecies to understand the genetic diversity...
详细信息
Sika deer (Cervus nippon) is a cervid endemic to mainland and insular Asia and endan-gered. We analyzed variation in the mitochondrial DNA (mtDNA) control region for four subspecies to understand the genetic diversity, population structure and evolutionary history in China. 335 bp were se-quenced and eight haplotypes were identified based on 25 variable sites among the populations. Sika deer in China showed lower genetic diversity, sug-gesting a small effective population size due to habi-tat fragmentation, a low number of founder individu-als, or the narrow breeding program. AMOVA analy-sis indicated that there was significant genetic subdi-vision among the four populations, but no correlation between the genetic and geographic distance. Phy-logenetic analyses also revealed that Chinese sika deer may be divided into three genetic clades, but the genetic structure among Chinese populations was inconsistent with subspecies designations and pre-sent geographic distribution. Including the sequence data of Japanese sika deer, the results indicated that Chinese populations were more closely related to Southern Japanese populations than to the Northern Japanese one, and the Taiwan population was closer to populations of Northeastern China and Sichuan than to those of Southern China.
Perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) are important perfluorochemicals (PFCs) in various applications. Recently, it has been shown that these compounds are widespread in the environment, wildli...
详细信息
Perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) are important perfluorochemicals (PFCs) in various applications. Recently, it has been shown that these compounds are widespread in the environment, wildlife, and humans. The giant panda and the red panda belong to the order Carnivora, but are highly specialized as bamboo feeders. Both species are considered rare and endangered. In this study, we report for the first time on levels of PFOS and PFOA in serum of the giant panda and the red panda captured in zoos and animal parks from six provinces in China. PFOS was the predominant compound in all panda samples measured (ranging from 0.80 to 73.80 mu g/L for red panda and from 0.76 to 19.00 mu g/L for giant panda). The PFOA level ranged from 0.33 to 8.20 mu g/L for red panda, and from 0.32 to 1.56 mu g/L for giant panda. There was a positive significant correlation between concentrations of PFOS and PFOA in the serum obtained from pandas. No age- or sex- related differences were observed in concentrations of the fluorochemicals in panda sera. Greater concentrations of the fluorochemicals were found for those individuals collected from zoos near urbanized or industrialized areas than for other areas. These data combined with other reported data suggest that there are large differences in distribution of perfluorinated compounds in terrestrial animals.
We studied the diet and food choice of 1 group of Francois' langurs (Trachypithecus francoisi) from August 2003 to July 2004 in the Nonggang Nature Reserve, Guangxi province, China. The langurs consumed 90 plant s...
详细信息
We studied the diet and food choice of 1 group of Francois' langurs (Trachypithecus francoisi) from August 2003 to July 2004 in the Nonggang Nature Reserve, Guangxi province, China. The langurs consumed 90 plant species, including 14 unidentified species. Leaves constituted 52.8% of the diet (38.9% young leaves and 13.9% mature leaves). Fruits and seeds accounted for 17.2% and 14.2%, respectively. Flowers and other items-including petioles, stems, roots, and bark-contributed to 7.5% and 7.4% of the diet, respectively. The langur diet varied according to season. They fed on more young leaves from April to September. Consumption of seeds, petioles, and stems increased between October and March, when young leaves were scarce. The diet shift corresponded to higher dietary diversity during the young leaf-lean period. Though the langurs fed on many plant species, 10 species accounted for 62.2% of the diet, only 2 of which were among the 10 most common tree species in vegetation quadrants, and the percentage of feeding records on a plant species and the percentage of individuals of the species in vegetation quadrants does not correlate significantly. Francois' langurs fed selectively, and they did not base their diet simply on the abundance of plant species in the habitat.
暂无评论