This study explored the change of tetracycline degradation efficiency, metabolic pathway, soil physiochemical properties and degraders in vermiremediation by two earthworm species of epigeic Eisenia fetida and endogei...
详细信息
This study explored the change of tetracycline degradation efficiency, metabolic pathway, soil physiochemical properties and degraders in vermiremediation by two earthworm species of epigeic Eisenia fetida and endogeic Amynthas robustus. We found a significant acceleration of tetracycline degradation in both earthworm treatments, and 4-epitetracycline dehydration pathway was remarkably enhanced only by vermiremediation. Tetracycline degraders from soils, earthworm intestines and casts were different. Ralstonia and Sphingomonas were potential tetracycline degraders in soils and metabolized tetracycline through direct dehydration pathway. Degraders in earthworm casts (Comamonas, Acinetobacter and Stenotrophomonas) and intestines (Pseudomonas and Arthrobacter) dehydrated 4-epitetracycline into 4-epianhydrotetracycline. More bacterial lineages resisting tetracycline were found in earthworm treatments, indicating the adaptation of soil and intestinal flora under tetracycline pressure. Earthworm amendment primarily enhanced tetracycline degradation by neutralizing soil pH and consuming organic matters, stimulating both direct dehydration and epimerization-dehydration pathways. Our findings proved that vermicomposting with earthworms is effective to alter soil microenvironment and accelerate tetracycline degradation, behaving as a potential approach in soil remediation at tetracycline contaminated sites.
A strategy based on fluorescence coupled capillary electrophoresis (CE-FL) was developed for analyzing tetrahedron DNA (TD) and TD-doxorubicin (DOX) conjugate. Capillary gel electrophoresis exhibited desirable perform...
详细信息
A strategy based on fluorescence coupled capillary electrophoresis (CE-FL) was developed for analyzing tetrahedron DNA (TD) and TD-doxorubicin (DOX) conjugate. Capillary gel electrophoresis exhibited desirable performance for separating TD and DNA strands. Under the optimized conditions, satisfactory repeatability concerning run-to-run and interday repeatability was obtained, and relative standard deviation value of resolution (n = 6) was 0.64%. Furthermore, the combination of CE and fluorescence detection provided a sensitive platform for quantifying TD concentration and calculating the damage degree of TD. The electrophoretograms indicated that CE-FL was a suitable TD assay method with high specificity and sensitivity. In addition, the application of CE-FL for TD fluorescence resonance energy transfer (FRET) research was also explored. Two types of DNA strands were utilized to interfere the formation of TD. The impact of partially complementary chain and completely complementary chain on FRET signal was explored, and the influence mechanism was discussed. After applying CE-FL for characterizing TD, we also combine CE and FRET to analyze TD-DOX conjugate. CE presented a favourable technique to monitor DOX loading and releasing processes. These noteworthy results offered a stepping stone for DNA nanomaterials assay by using CE-FL.
Pulmonary arterial hypertension (PAH) is characterized by pulmonary arterial endothelial hyperproliferation and dysfunction. Restoration of endothelial function is a common goal of available treatments. In the present...
详细信息
Pulmonary arterial hypertension (PAH) is characterized by pulmonary arterial endothelial hyperproliferation and dysfunction. Restoration of endothelial function is a common goal of available treatments. In the present study, human adipose-derived mesenchymal stromal cells (ASCs) were co-cultured with monocrotaline pyrrole-treated human pulmonary arterial endothelial cells (HPAECs);increased proliferation of HPAECs and expression of vascular endothelial growth factor (VEGF) were observed. High throughput sequencing results showed that six microRNAs (miMNAs) of ASCs were significantly dysregulated. In monocrotaline-induced PAH rat models, ASC transplantation improved the right ventricle systolic pressure, right ventricle hypertrophy and pulmonary endothelium hyperproliferation, and four of the six miRNAs were validated in the lung tissue samples. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that these dysregulated miRNAs were involved in the regulation of transcription, signal transduction, negative regulation of cell proliferation through mitogen-activated protein kinase (MAPK) signaling pathway, Wnt signaling pathway, VEGF signaling pathway, cytokine-cytokine receptor interaction, regulation of actin cytoskeleton, transforming growth factor (TGF)-beta signaling pathway and P53 signaling pathway. Our data indicates that the unique six miRNA expression signature could be involved in the PAH endothelial repair by ASCs.
The porous beta-tricalcium phosphate (TCP) bioceramic scaffolds were successfully prepared by 3D gel-printing method. The calcium phosphate salt precursor was synthesized by hydration precipitation method and calcium ...
详细信息
The porous beta-tricalcium phosphate (TCP) bioceramic scaffolds were successfully prepared by 3D gel-printing method. The calcium phosphate salt precursor was synthesized by hydration precipitation method and calcium chloride and diammonium hydrogen phosphate were as raw materials. The rheological properties of slurries with different calcium to phosphorus (Ca/P) ratios and the shrinkage and porosity of the printed scaffolds were studied in this paper. Also, the effect of different Ca/P ratios on the composition of powders was studied. The calcium phosphate salt powders with average particle size of 37.12 mu m were used in this study and the maximum solids loading of the slurry which is suitable for printing was about 50 vol% and the printing green scaffolds have well-distributed designed voids and microporous. The beta-TCP bioceramic scaffolds were obtained by sintering at 1100 degrees C for 3 h when Ca/P ratio is 3.5. The porosity of the sintered scaffold is approximately 58.05% which is suitable for bone growth in bone repair engineering.
暂无评论