The compact extracellular matrix (ECM) of pancreatic ductal adenocarcinoma (PDAC) is the major physical barrier that hinders the delivery of anti-tumor drugs, leading to strong inherent chemotherapy resistance as well...
详细信息
The compact extracellular matrix (ECM) of pancreatic ductal adenocarcinoma (PDAC) is the major physical barrier that hinders the delivery of anti-tumor drugs, leading to strong inherent chemotherapy resistance as well as establishing an immunosuppressive tumor microenvironment (TME). However, forcibly destroying the stroma barrier would break the balance of delicate signal transduction and dependence between tumor cells and matrix components. Uncontrollable growth and metastasis would occur, making PDAC more difficult to control. Hence, we design and construct an aptamer-decorated hypoxia-responsive nanoparticle s(DGL)(n)@Apt co-loading gemcitabine monophosphate and STAT3 inhibitor HJC0152. This nanoparticle can reverse its surficial charge in the TME, and reduce the size triggered by hypoxia. The released ultra-small DGL particles loading gemcitabine monophosphate exhibit excellent deep-tumor penetration, chemotherapy drugs endocytosis promotion, and autophagy induction ability. Meanwhile, HJC0152 inhibits overactivated STAT3 in both tumor cells and tumor stroma, softens the stroma barrier, and reeducates the TME into an immune-activated state. This smart code -livery strategy provides an inspiring opportunity in PDAC treatment.
Recently, heat treatment in the range of 250 degrees C-500 degrees C has been attempted with the aim of improving the quality factor (Q) of superconducting radio-frequency (SRF) cavities worldwide. Herein, medium-temp...
详细信息
Recently, heat treatment in the range of 250 degrees C-500 degrees C has been attempted with the aim of improving the quality factor (Q) of superconducting radio-frequency (SRF) cavities worldwide. Herein, medium-temperature (mid-T) furnace baking experiments were conducted at the Institute of High Energy Physics to obtain higher Q values. First, 1.3 GHz 1-cell cavities received mid-T furnace baking at different temperatures, resulting in not only the improvement of Q but also an anti-Q-slope behavior. Furthermore, mid-T furnace baking was applied to six 1.3 GHz 9-cell cavities, all of which indicated higher Q and anti-Q-slope behavior. The average Q was 3.8 x 10(10) at 16 MV m(-1). The maximum gradients of the 9-cell cavities were 22.7-26.5 MV m(-1). Finally, the mid-T furnace baked 1.3 GHz 9-cell cavities were welded with helium vessel, with no degradation in the vertical tests. In addition, the mid-T furnace baking process was simplified in comparison with European X-ray Free Electron Laser and Linear Coherent Light Source because of the cancellation of light electro-polishing. This simplification is beneficial in the mass production of SRF cavities with high Q, which are widely adopted in free electron lasers and high-energy colliders.
暂无评论