As non-renewable natural resources, minerals are essential in a broad range of biological and technological applications. The surface interactions of mineral particles with other objects (e.g., solids, bubbles, reagen...
详细信息
As non-renewable natural resources, minerals are essential in a broad range of biological and technological applications. The surface interactions of mineral particles with other objects (e.g., solids, bubbles, reagents) in aqueous suspensions play a critical role in mediating many interfacial phenomena involved in mineral flotation. In this work, we have reviewed the fundamentals of surface forces and quantitative surface property-force relationship of minerals, and the advances in the quantitative measurements of interaction forces of mineral-mineral, bubble-mineral and mineral-reagent using nanomechanical tools such as surface forces apparatus (SFA) and atomic force microscope (AFM). The quantitative correlation between surface properties of minerals at the solid/water interface and their surface interaction mechanisms with other objects in complex aqueous media at the nanoscale has been established. The existing challenges in mineral flotation such as characterization of anisotropic crystal plane or heterogeneous surface, low recovery of fine particle flotation, and in-situ electrochemical characterization of collectorless flotation as well as the future work to resolve the challenges based on the understanding and modulation of surface forces of minerals have also been discussed. This review provides useful insights into the fundamental understanding of the intermolecular and surface interaction mechanisms involved in mineral processing, with implications for precisely modulating related interfacial interactions towards the development of highly efficient industrial processes and chemical additives.
Human papillomaviruses (HPV) contribute to most cervical cancers and are considered to be sexually transmitted. However, papillomaviruses are often found in cancers of internal organs, including the stomach, raising t...
详细信息
Human papillomaviruses (HPV) contribute to most cervical cancers and are considered to be sexually transmitted. However, papillomaviruses are often found in cancers of internal organs, including the stomach, raising the question as to how the viruses gain access to these sites. A possible connection between blood transfusion and HPV-associated disease has not received much attention. Here we show, in rabbit and mouse models, that blood infected with papillomavirus yields infections at permissive sites with detectable viral DNA, RNA transcripts, and protein products. The rabbit skin tumours induced via blood infection displayed decreased expression of SLN, TAC1, MYH8, PGAM2, and APOBEC2 and increased expression of SDRC7, KRT16, S100A9, IL36G, and FABP9, as seen in tumours induced by local infections. Furthermore, we demonstrate that blood from infected mice can transmit the infection to uninfected animals. Finally, we demonstrate the presence of papillomavirus infections and virus-induced hyperplasia in the stomach tissues of animals infected via the blood. These results indicate that blood transmission could be another route for papillomavirus infection, implying that the human blood supply, which is not screened for papillomaviruses, could be a potential source of HPV infection as well as subsequent cancers in tissues not normally associated with the viruses.
暂无评论