The ozone-based advanced oxidation process in wastewater effluent degrades refractory organics efficiently and significantly. Nevertheless, high energy consumption is a challenge that hinders its widespread applicatio...
详细信息
Tertiary lymphoid structures (TLSs) are ectopic lymphocyte aggregates formed in non-lymphoid tissues, including cancers, and are loci for the generation of in situ anti-tumor immune responses, which play a crucial rol...
详细信息
Tertiary lymphoid structures (TLSs) are ectopic lymphocyte aggregates formed in non-lymphoid tissues, including cancers, and are loci for the generation of in situ anti-tumor immune responses, which play a crucial role in cancer control. The state of TLS presence in cancer and its composition can significantly impact the treatment response and prognosis of patients. TLSs have the potential to serve as predictive and prognostic biomarkers for cancer. However, the mechanisms underlying TLS formation in cancer and how the essential components of TLSs affect cancer are not fully understood. In this review, we summarized TLS formation in cancer, the value of the TLS in different states of existence, and its key constituents for cancer prediction and prognosis. Finally, we discussed the impact of cancer treatment on TLSs.
Current therapeutic strategies for Alzheimer's disease (AD) treatments mainly focus on beta-amyloid (A beta) targeting. However, such therapeutic strategies have limited clinical outcomes due to the chronic and ir...
详细信息
Current therapeutic strategies for Alzheimer's disease (AD) treatments mainly focus on beta-amyloid (A beta) targeting. However, such therapeutic strategies have limited clinical outcomes due to the chronic and irreversible impairment of the nervous system in the late stage of AD. Recently, inflammatory responses, manifested in oxidative stress and glial cell activation, have been reported as hallmarks in the early stages of AD. Based on the crosstalk between inflammatory response and brain cells, a reactive oxygen species (ROS)-responsive dendrimer-peptide conjugate (APBP) is devised to target the AD microenvironment and inhibit inflammatory responses at an early stage. With the modification of the targeting peptide, this nanoconjugate can efficiently deliver peptides to the infected regions and restore the antioxidant ability of neurons by activating the nuclear factor (erythroid-derived 2)-like 2 signaling pathway. Moreover, this multi-target strategy exhibits a synergistic function of ROS scavenging, promoting A beta phagocytosis, and normalizing the glial cell phenotype. As a result, the nanoconjugate can reduce ROS level, decrease A beta burden, alleviate glial cell activation, and eventually enhance cognitive functions in APPswe/PSEN1dE9 model mice. These results indicate that APBP can be a promising candidate for the multi-target treatment of AD.
Two-terminal optoelectronic synaptic devices have attracted increasing attention owing to their simplicity of structures, which facilitate the device integration in neuromorphic computing systems. However, synaptic-we...
详细信息
Two-terminal optoelectronic synaptic devices have attracted increasing attention owing to their simplicity of structures, which facilitate the device integration in neuromorphic computing systems. However, synaptic-weight updates and self-rectifying properties in two-terminal optoelectronic synaptic devices are inferior. Here, we fabricate two-terminal optoelectronic synaptic devices in accordance with the hybrid structure of optically active layers MAPbI(3) and electron transport layers (ETLs) SnO2 in an n-i-p planar system, where MAPbI3 and SnO2 are used for generating and trapping carriers, respectively. Synaptic functionalities such as excitatory post-synaptic current (EPSC), paired-pulse facilitation (PPF), spike-number dependent plasticity (SNDP), and spike-rate dependent plasticity (SRDP) are all successfully mimicked without external bias. These synaptic devices possess self-rectifying properties with a highest ratio of similar to 0.3 x 10(3) and their synaptic weight exhibits largest-dynamic-range updates of 14.3 within 14 seconds among the reported two-terminal optoelectronic synaptic devices. Furthermore, the spike-number tunability of EPSC in the synaptic devices leads to the realization of straight running of agrimotor driverless technology. Results dramatically promote the development of two-terminal optoelectronic synaptic devices in neuromorphic computing.
暂无评论