The compact extracellular matrix (ECM) of pancreatic ductal adenocarcinoma (PDAC) is the major physical barrier that hinders the delivery of anti-tumor drugs, leading to strong inherent chemotherapy resistance as well...
详细信息
The compact extracellular matrix (ECM) of pancreatic ductal adenocarcinoma (PDAC) is the major physical barrier that hinders the delivery of anti-tumor drugs, leading to strong inherent chemotherapy resistance as well as establishing an immunosuppressive tumor microenvironment (TME). However, forcibly destroying the stroma barrier would break the balance of delicate signal transduction and dependence between tumor cells and matrix components. Uncontrollable growth and metastasis would occur, making PDAC more difficult to control. Hence, we design and construct an aptamer-decorated hypoxia-responsive nanoparticle s(DGL)(n)@Apt co-loading gemcitabine monophosphate and STAT3 inhibitor HJC0152. This nanoparticle can reverse its surficial charge in the TME, and reduce the size triggered by hypoxia. The released ultra-small DGL particles loading gemcitabine monophosphate exhibit excellent deep-tumor penetration, chemotherapy drugs endocytosis promotion, and autophagy induction ability. Meanwhile, HJC0152 inhibits overactivated STAT3 in both tumor cells and tumor stroma, softens the stroma barrier, and reeducates the TME into an immune-activated state. This smart code -livery strategy provides an inspiring opportunity in PDAC treatment.
The emergence of immune checkpoint inhibitors (ICIs) has heralded a transformative era in the therapeutic landscape of non-small cell lung cancer (NSCLC). While ICIs have demonstrated clinical efficacy in a portion of...
详细信息
The emergence of immune checkpoint inhibitors (ICIs) has heralded a transformative era in the therapeutic landscape of non-small cell lung cancer (NSCLC). While ICIs have demonstrated clinical efficacy in a portion of patients with NSCLC, these treatments concurrently precipitate a spectrum of immune-related adverse events (irAEs), encompassing mild to severe manifestations, collectively posing a risk of significant organ damage. Consequently, there exists an imperative to augment our comprehension of the pathophysiological underpinnings of irAEs and to formulate more efficacious preventive and ameliorative strategies. In this comprehensive review, we delineate the clinical presentation of organ-specific irAEs in patients with NSCLC and provide an in-depth analysis of recent advancements in understanding the mechanisms driving ICI-induced toxicity. Furthermore, we discuss potential strategies and targets for ameliorating these irAEs. Ultimately, this review aims to furnish valuable insights to guide further research endeavours in the context of irAEs in NSCLC patients. Immunotherapy not only revolutionises lung cancer treatment but also poses serious toxicity risks. Elucidating irAE mechanisms in NSCLC: T/B-cell dysregulation, cytokine imbalances, autoantibody production, genetic predispositions and gut microbiome alterations. Highlighting precise irAE interventions in NSCLC: corticosteroids, targeted immunosuppressants, monoclonal antibodies targeting lymphocytes, cytokine inhibitors and signalling pathway modulators. image
暂无评论