咨询与建议

限定检索结果

文献类型

  • 1 篇 期刊文献

馆藏范围

  • 1 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1 篇 工学
    • 1 篇 电气工程
    • 1 篇 信息与通信工程
    • 1 篇 计算机科学与技术...

主题

  • 1 篇 a. foi
  • 1 篇 "a review on med...
  • 1 篇 NOT FOUND
  • 1 篇 jun. 2005
  • 1 篇 vol. 16
  • 1 篇 v. katkovnik
  • 1 篇 NOT FOUND
  • 1 篇 art. no. 102036
  • 1 篇 and k. egiazaria...
  • 1 篇 smoothness-promo...
  • 1 篇 "ieee trans. ima...
  • 1 篇 "image denoising...
  • 1 篇 and j.-m. morel
  • 1 篇 pp. 3736-3745
  • 1 篇 vol. 61
  • 1 篇 "in proc. ieee c...
  • 1 篇 no. 8
  • 1 篇 "ieee ieee trans...
  • 1 篇 "biomed. signal ...
  • 1 篇 "a non-local alg...

机构

  • 1 篇 hongik univ dept...

作者

  • 1 篇 jun yook hyun
  • 1 篇 kim tae hyung
  • 1 篇 kyu lee youn
  • 1 篇 min hong pyo
  • 1 篇 won yoon jung

语言

  • 1 篇 英文
检索条件"主题词="A non-local algorithm for image denoising"
1 条 记 录,以下是1-10 订阅
排序:
Orthogonal Transform-Driven Data Augmentation for Limited Gaussian-Tainted Dataset
收藏 引用
IEEE ACCESS 2024年 12卷 127272-127282页
作者: Won Yoon, Jung Jun Yook, Hyun Min Hong, Pyo Kyu Lee, Youn Kim, Tae Hyung Hongik Univ Dept Comp Engn Seoul 04066 South Korea
A large amount of data collected from sensors exhibits Gaussian noise characteristics, making denoising and related processing critical. However, data scarcity can lead to overfitting, posing challenges in training de... 详细信息
来源: 评论