Epidemiologists use individual-based models to (a) simulate disease spread over dynamic contact networks and (b) to investigate strategies to control the outbreak. These model simulations generate complex 'infecti...
详细信息
Epidemiologists use individual-based models to (a) simulate disease spread over dynamic contact networks and (b) to investigate strategies to control the outbreak. These model simulations generate complex 'infection maps' of time-varying transmission trees and patterns of spread. Conventional statistical analysis of outputs offers only limited interpretation. This paper presents a novel visual analytics approach for the inspection of infection maps along with their associated metadata, developed collaboratively over 16 months in an evolving emergency response situation. We introduce the concept of representative trees that summarize the many components of a time-varying infection map while preserving the epidemiological characteristics of each individual transmission tree. We also present interactive visualization techniques for the quick assessment of different control policies. Through a series of case studies and a qualitative evaluation by epidemiologists, we demonstrate how our visualizations can help improve the development of epidemiological models and help interpret complex transmission patterns.
Aortic dissection is a life-threatening vascular disease characterized by abrupt formation of a new flow channel (false lumen) within the aortic wall. Survivors of the acute phase remain at high risk for late complica...
详细信息
Aortic dissection is a life-threatening vascular disease characterized by abrupt formation of a new flow channel (false lumen) within the aortic wall. Survivors of the acute phase remain at high risk for late complications, such as aneurysm formation, rupture, and death. Morphologic features of aortic dissection determine not only treatment strategies in the acute phase (surgical vs. endovascular vs. medical), but also modulate the hemodynamics in the false lumen, ultimately responsible for late complications. Accurate description of the true and false lumen, any communications across the dissection membrane separating the two lumina, and blood supply from each lumen to aortic branch vessels is critical for risk prediction. Patient-specific surface representations are also a prerequisite for hemodynamic simulations, but currently require time-consuming manual segmentation of CT data. We present an aortic dissection cross-sectional model that captures the varying aortic anatomy, allowing for reliable measurements and creation of high-quality surface representations. In contrast to the traditional spline-based cross-sectional model, we employ elliptic Fourier descriptors, which allows users to control the accuracy of the cross-sectional contour of a flow channel. We demonstrate (i) how our approach can solve the requirements for generating surface and wall representations of the flow channels, (ii) how any number of communications between flow channels can be specified in a consistent manner, and (iii) how well branches connected to the respective flow channels are handled. Finally, we discuss how our approach is a step forward to an automated generation of surface models for aortic dissections from raw 3D imaging segmentation masks.
暂无评论