随着泛在网络与普适计算的快速发展,企业数字化发展进入大数据时代,物联网+数据分析成为了企业在数字时代大幅提高生产效率、降低作业风险、增加客户满意度、提升智能化水平的重要信息技术架构,且逐步成熟应用。业务流程作为企业真正实现目标定位、价值创造的核心,需要与信息技术发展共同进化、相辅相成。而且,业务流程的情境可在物联网环境中得到有效捕捉和采集,可极大丰富其数据维度和体量,同时情境隐含着业务环境和流程行为的中介信息。情境感知能力随之成为业务流程建模的新范式和新原则,以面向动态场景实现快速灵活响应、针对多样的客户需求提供个性化服务、面对知识密集型任务保障正确执行。虽然,情境感知业务流程建模领域已获得学术界和业界的关注和探索,流程变体、流程情境化等部分零散化解决方案被提出,但仍大幅依赖专家知识,完整性和系统性存在不足。考虑到流程改造的庞大成本和时间周期,业务流程趋向于规范化和稳定性。但是,在多元动态市场对灵活性、机敏性的更高要求下,业务流程管理(Business Process Management,BPM)领域自2013年起呈现出将决策维度抽离业务流程的工作流单独建模的研究趋势。即通过将业务规则表达和数据分析能力封装在决策模型中,将流程智能化和动态性抽离至其决策模型维度,形成决策模型与业务流程模型分别构建又有机结合的一体化模型。其中,决策建模标记法(Decision Modelling Notation,DMN)的提出是里程碑式的研究成果,为业务流程的决策和工作流提供了可分离并可集成的建模方法和技术,开创了集成决策的业务流程一体化建模新范式(BPMN/CMMN+DMN)。然而,着眼于情境感知的业务流程建模研究,决策维度仍然以传统的建模方式隐含嵌入在业务流程的工作流中,硬编码大量数据、业务规则并引入大量网关,不利于其对动态场景的灵活响应与适应性调整。基于以上发展趋势、应用需求以及研究不足,本研究的科学问题可以归结为:“面向情境感知业务流程建模,如何识别并集成业务流程的情境以应对动态性?面向物联网+数据分析信息技术发展与应用,如何连接企业物联网基础设施与情境感知业务流程以实现共同进化?”。由此,本研究将集成决策的业务流程一体化建模范式引入情境感知业务流程建模领域,从理论和应用两方面显示化决策在业务流程获取情境感知进程中的重要角色;提出Deci-CaBPM(Decision-based Context-aware Business Process Modelling)情境感知业务流程建模框架方法,为系统性实现情境适应性节点识别,适应性调整流程片段设计,并进化构建具有情境感知可变性的业务流程模型提供方法论;搭建物联网环境下的情境感知业务流程多层应用架构,融合物联网的情境数据在层级间的流动和转化,将物联网基础设施、流程情境、动态数据分析、智能决策与情境感知的业务流程有机连接起来,为企业业务流程与物联网、机器学习等信息技术融合发展、共同进化提供解决方案。此外,应用Deci-CaBPM框架方法与物联网环境下的情境感知业务流程多层应用架构,实现了港口物流企业汽车提货流程与物联网基础设施改造的共同进化,构建了情境感知的汽车提货流程模型,并集成了汽车提货货物偷盗贝叶斯网络预测模型,实现物联网环境下的作业风险智能化管理。基于行业需求驱动、真实数据支持的案例研究,对本文提出的方法论和解决方案进行了可用性验证和有效性评估,同时为更多企业业务流程面向情境感知可变性建模、与物联网技术应用共同进化提供有效参考、借鉴。本文主要研究内容与成果如下:(1)提出业务流程的情境、情境感知的业务流程可应用的标准化定义,补充集成决策的业务流程结构的理论表达,并面向情境感知可变性进行推演,分析检验决策在业务流程与其情境之间的内生连接作用。(2)分析战略、战术/管理、运营决策对情境感知业务流程的驱动机制,构建决策在业务流程获取情境感知可变性中的关键角色分析模型。(3)将集成决策的业务流程一体化建模范式引入情境感知业务流程领域,提出Deci-CaBPM集成决策的情境感知业务流程一体化建模框架方法,包括显式化融合情境的CaDMN(Context-aware DMN)决策建模扩展标准及其应用步骤,支持系统性实现业务流程情境化和适应性调整建模全环节。(4)搭建物联网环境下的情境感知业务流程多层应用架构,支持Deci-CaBPM框架方法的行业应用,并以融合物联网的情境数据在层级间的流转连接多个层级,包括物联网基础设施、业务流程情境、动态数据分析、CaDMN决策模型和情境感知业务流程五个层级,为企业级的应用提供解决方案。(5)在港口物流行业中,通过应用Deci-CaBPM框架方法与物联网环境下的情境感知业务流程多层应用架构,帮助企业完成了汽车提货流程面向情境感知可变性的进化建模,同时集成了汽车提
暂无评论