针对代价敏感学习问题,研究boosting算法的代价敏感扩展。提出一种基于代价敏感采样的代价敏感boosting学习方法,通过在原始boosting每轮迭代中引入代价敏感采样,最小化代价敏感损失期望。基于上述学习框架,推导出两种代价敏感boosting算法,同时,揭示并解释已有算法的不稳定本质。在加州大学欧文分校(University of California,Irvine,UCI)数据集和麻省理工学院生物和计算学习中心(Center for Biological&Computational Learning,CBCL)人脸数据集上的实验结果表明,对于代价敏感分类问题,代价敏感采样boosting算法优于原始boosting和已有代价敏感boosting算法。
简要地回顾了代价敏感学习的理论和现有的代价敏感学习算法.将代价敏感学习算法分为两类,分别是直接代价敏感学习和代价敏感元学习,其中代价敏感元学习可以将代价不敏感的分类器转换为代价敏感的分类器.提出了一种简单、通用、有效的元学习算法,称为经验阈值调整算法(简称ETA).评估了各种代价敏感元学习算法和ETA的性能.ETA几乎总是得到最低的误分类代价,而且它对误分类代价率最不敏感.还得到了一些关于元学习的其它有用结论.文章是"Thresholding for Making Classifiers Cost-sensitive"的改进和扩展版本,原文章由Victor ***和Charles ***完成,发表于AAAI2006国际会议.
暂无评论