利用奇异值分解(Singular value decomposition,SVD)进行信号处理的关键在于矩阵的构造,为利用SVD分离信号中的不同频率成分,提出一种变矩阵结构递推SVD算法,其思想是在SVD递推分解过程中逐次改变矩阵的结构,每进行一次SVD分解,矩阵的...
详细信息
利用奇异值分解(Singular value decomposition,SVD)进行信号处理的关键在于矩阵的构造,为利用SVD分离信号中的不同频率成分,提出一种变矩阵结构递推SVD算法,其思想是在SVD递推分解过程中逐次改变矩阵的结构,每进行一次SVD分解,矩阵的结构就规律性地变化一次,由此形成对信号中不同频率成分的适应性,从而达到将其分离出来的目的。推导出这种变结构SVD的信号分解算法,证明了这种算法可以将原始信号分解为一系列分量信号的线性组合。进一步从理论上分析了这种算法的信号分离机理,证明了对于一些特定的频率结构,这种变结构SVD算法可以实现对原信号中单个频率分量的逐次分离。最后通过对模拟信号和工程实际信号的分离实例证实了变结构SVD算法良好的信号分离效果,并与小波分析和多分辨SVD方法进行了比较,结果表明变结构SVD的信号分离结果优于这两种方法。
暂无评论