The objective of this study was to determine whether addition of dietary 20:4n-6 and 22:6n-3 to a conventional infant formula fat blend influences membrane long-chain and very-long-chain fatty acid composition, rhodop...
详细信息
The objective of this study was to determine whether addition of dietary 20:4n-6 and 22:6n-3 to a conventional infant formula fat blend influences membrane long-chain and very-long-chain fatty acid composition, rhodopsin content, and rhodopsin kinetics in developing rat photoreceptor cells. The dietary fats were formulated based on the fat composition of a conventional infant formula providing an 18:2n-6/18:3n-3 ratio of 7:1 (SMA, Wyeth Nutritionals), which served as the control fat blend. This dietary fat blend was modified to contain 20:4n-6 [arachidonic acid (AA)], 22:6n-3 [docosahexaenoic acid (DHA)], AA + DHA, or an 18:2n-6/18:3n-3 ratio of 4:1 (alpha-linolenic acid). Darns were fed diets from birth, and rat pups were fed the same diet after weaning. Retinas and rod outer segments were prepared in the dark from pups at 2, 3, and 6 wk of age for fatty acid analysis of individual phospholipids, rhodopsin content, and rhodopsin disappearance kinetics after light exposure. Feeding AA + DHA in the diet increased 22:6n-3 levels in phosphatidylcholine and phosphatidylethanolamine. In phosphatidylcholine, total n-6 tetraenoic very-long-chain fatty acids and total n-3 pentaenoic and n-3 hexaenoic very-long-chain fatty acids increased after feeding AA and DHA, respectively. Developmental changes were characterized by a decrease in 20:4n-6 in the major phospholipids, whereas 22:6n-3 increased with age in rod outer segments. The highest rhodopsin content occurred in the retina of rats fed diets containing AA and/or DHA, The kinetics of rhodopsin disappearance after light exposure was highest in rats fed DIIA at 6 wk of age. This study demonstrates that small manipulations of the dietary level of 20:4n-6 and 22:6n-3 are important determinants of fatty acid composition of membrane lipid and visual pigment content and kinetics in the developing photoreceptor cell.
To identify molecular markers of cell differentiation in developing nervous tissue, monoclonal antibodies against chick embryo neural retina were made. One of them, 3C3mAb, recognized a developmentally regulated antig...
详细信息
To identify molecular markers of cell differentiation in developing nervous tissue, monoclonal antibodies against chick embryo neural retina were made. One of them, 3C3mAb, recognized a developmentally regulated antigen present in several organs of the CNS. Data from MALDI-TOF mass spectrometry and peptide sequencing of the immuno-affinity purified protein indicated identity of the antigen with MARCKS. The immunoreactive material was always found as a unique polypeptide (M-r 71 kDa) in SDS-PAGE, however isoelectrofocusing revealed the existence of several bands (pI ranging from 4.0 to 4.5). Interestingly some retinal cell types, as photoreceptors, exhibited an extremely significant decrease in the intensity of the immunoreactive material during the final phases of terminal differentiation while others, as some retinal neurons, maintained the immunoreactivity when fully differentiated. Taken together these results indicate that MARCKS, a protein susceptible of several posttranslational modifications as myristoylation and phosphorylation at variable extent, may act differently in neural retina cell types. (C) 1999 Academic Press.
The mammalian retina, like the rest of the central nervous system, is highly stable and can maintain its structure and function for the full life of the individual, in humans for many decades. Photoreceptor dystrophie...
详细信息
The mammalian retina, like the rest of the central nervous system, is highly stable and can maintain its structure and function for the full life of the individual, in humans for many decades. Photoreceptor dystrophies are instances of retinal instability. Many are precipitated by genetic mutations and scores of photoreceptor-lethal mutations have now been identified at the codon level. This review explores the factors which make the photoreceptor more vulnerable to small mutations of its proteins than any other cell of the body, and more vulnerable to environmental factors than any other retinal neurone. These factors include the highly specialised structure and function of the photoreceptors, their high appetite for energy, their self-protective mechanisms and the architecture of their energy supply from the choroidal circulation. Particularly important are the properties of the choroidal circulation, especially its fast how of near-arterial blood and its inability to autoregulate. Mechanisms which make the retina stable and unstable are then reviewed in three different models of retinal degeneration, retinal detachment, photoreceptor dystrophy and light damage. A two stage model of the genesis of photoreceptor dystrophies is proposed, comprising an initial "depletion" stage caused by genetic or environmental insult and a second "late" stage during which oxygen toxicity damages and eventually destroys any photoreceptors which survive the initial depletion. it is a feature of the model that the second "late" stage of retinal dystrophies is driven by oxygen toxicity. The implications of these ideas for therapy of retinal dystrophies are discussed. (C) 1999 Elsevier Science Ltd. All rights reserved.
暂无评论