股票价格的预测模型可以帮助交易者做更好的交易策略,但是因为股票价格受到很多方面因素的影响,要建立一个合适的模型去模拟股票价格的波动是不容易的。时间序列模型在预测方面的应用受到了广泛的认可,因此,以往有很多研究股票价格预测的文章都用到了时间序列模型。但是很多时间序列模型,如著名的ARIMA模型,通常需要假设样本数据本身或变换后有平稳性和线性性,这一假设并不一定能满足,因此人们要寻找新的模型,可以适用于更宽松的假设,减少由于不满足模型假设而引起预测结果出现较大偏差的情形。文献上有Wang and Leu(1996)利用神经网络方法来建模并进行非线性拟合和预测,但这类模型多用于低频数据的分析。随着金融市场的迅速发展,证券市场中的交易越来越频繁,交易量也越来越大,相应的证券价格的变化也越来越频繁,所以传统的用低频数据来做证券市场的研究已经很难满足市场发展的需求,人们开始转向对时间间隔更小而数据量更大的高频数据的研究。高频的股票交易数据蕴含更丰富的信息,因而对建模选用的模型的灵活性和适用性有更高的要求。
结合自回归模型和非参数回归思想,本文提出了一个新的混合模型以预测未来股票的开盘价。该模型的自回归部分,反映了过去开盘价的信息,该模型的非参数部分,是对前一个交易日的日内交易价格与一个未知函数作积分所得。由于利用了前一个交易日的日内交易价格的综合信息,故有望能提高我们对未来股价的预测能力。我们对混合模型中的未知函数不作任何参数形式的设定。通过对日间交易价格进行函数型主成分分析,我们可以巧妙地拟合混合模型非参数部分。最后我们用沪深300指数的数据进行实证分析。分析结果显示,本文提出的混合模型相比于传统的自回归模型有更好的预测表现。
函数型主成分分析(Functional Principal Component Analysis,FPCA)是对函数型数据进行降维的常用技术,本文将考虑函数型数据的主成分联合选择问题。首先,本文给出了两函数型变量的主成分联合模型,并通过基函数展开法和极大惩罚似然法...
详细信息
函数型主成分分析(Functional Principal Component Analysis,FPCA)是对函数型数据进行降维的常用技术,本文将考虑函数型数据的主成分联合选择问题。首先,本文给出了两函数型变量的主成分联合模型,并通过基函数展开法和极大惩罚似然法对样本数据进行曲线平滑。在联合模型基础上,本文给出了确定函数型主成分个数的AIC准则,并提出了改进的ECME算法对模型参数进行估计。模拟显示AIC准则对应的主成分个数选择结果准确率更高,考虑两函数型数据之间相关信息的联合选择效果会比对各函数型数据主成分进行独立选择的结果有所提升。最后,本文将所提方法应用于老年人中医宗气数据的分析.
暂无评论