提出了基于局部均值分解(local mean decomposition,LMD)和峭度图(kurtogram)的滚动轴承包络分析方法.该方法中,原始滚动轴承故障振动信号通过LMD进行自适应的频率成分分离和初步降噪,包络分析中带通滤波器的参数通过峭度图客观地提供,...
详细信息
提出了基于局部均值分解(local mean decomposition,LMD)和峭度图(kurtogram)的滚动轴承包络分析方法.该方法中,原始滚动轴承故障振动信号通过LMD进行自适应的频率成分分离和初步降噪,包络分析中带通滤波器的参数通过峭度图客观地提供,从而提高滚动轴承包络分析的准确度.通过对滚动轴承仿真信号以及实验信号的分析,结果表明:在低信噪比情况下,LMD可以自适应分离出滚动轴承的固有振动成分,峭度图可以自动确定包络分析中带通滤波器的参数,与传统包络分析比较,所提方法能更加清晰准确地提取滚动轴承的故障特征.
暂无评论