于我们熟知的奈望利纳(Nevanlinna)氏第二基本定理,米约(Milloux)氏尝引入所论函数的纪(导)数作一推广.与之结合的不等式,可为亚(半)线函数与其纪数相关的理论之一基本工具,米氏曾赖之以作一绝对亏量瑟相对亏量的讨论,但因其中 p 个稠...
详细信息
于我们熟知的奈望利纳(Nevanlinna)氏第二基本定理,米约(Milloux)氏尝引入所论函数的纪(导)数作一推广.与之结合的不等式,可为亚(半)线函数与其纪数相关的理论之一基本工具,米氏曾赖之以作一绝对亏量瑟相对亏量的讨论,但因其中 p 个稠密指标的系数为大于1之数 q,此不等式于应用上,究不能恒与奈氏者比擬.例如奈氏曾依据其不等式以证明一个有重要意义的唯一性定理;今欲引用米氏者以寻求类似的结果则不可得,但他方面,据贡查罗夫Гончаров氏之一个定理此问题应为可能.
暂无评论