针对锂离子电池荷电状态(state of charge,SOC)估计过程中传统卡尔曼滤波算法噪声特性难以确定、收敛速度慢及精度差等一系列问题,提出了一种改进自适应卡尔曼滤波算法。首先,建立了电池等效电路模型,并在不同温度和SOC状态下,对模型参...
详细信息
针对锂离子电池荷电状态(state of charge,SOC)估计过程中传统卡尔曼滤波算法噪声特性难以确定、收敛速度慢及精度差等一系列问题,提出了一种改进自适应卡尔曼滤波算法。首先,建立了电池等效电路模型,并在不同温度和SOC状态下,对模型参数进行了辨识和精度验证。然后,对传统自适应卡尔曼滤波算法系统过程噪声协方差矩阵计算方式进行了正定性优化。此外,在状态估计结果的修正过程中,引入了对模型等误差变化进行补偿的增益因子。最后,通过实验电池的仿真和测试验证了所提算法的有效性。结果表明,在不同温度和工况条件下,SOC的估计误差均在4%以内,改进自适应卡尔曼滤波算法的估计精度和收敛速度均优于改进前的算法和常用的扩展卡尔曼滤波(extendedkalmanfilter,EKF)算法,具有较强的实用性。
针对传统卡尔曼滤波法在钒电池荷电状态(state of charge,SOC)估算中将电池内部模型参数作为恒定值,而导致误差增大的缺陷,该文使用反向传播(back propagation,BP)神经网络在线更新卡尔曼滤波过程的参数值,以提高参数的精度。选用常见...
详细信息
针对传统卡尔曼滤波法在钒电池荷电状态(state of charge,SOC)估算中将电池内部模型参数作为恒定值,而导致误差增大的缺陷,该文使用反向传播(back propagation,BP)神经网络在线更新卡尔曼滤波过程的参数值,以提高参数的精度。选用常见的戴维南(Thevenin)等效电路模型,通过神经网络更新内部欧姆内阻R0和极化电阻Rp、电容Cp完成卡尔曼滤波过程的优化,使系统模型卡尔曼滤波估算中的每一步都得到更新,从而弥补了上述传统算法的缺陷。同时,该文还设计了电池测试试验,通过对数据的检验以及与双卡尔曼滤波的优化方式的结果进行对比,验证了神经网络优化的方法较双卡尔曼滤波优化能更好地体现出系统的动态特性,估算的结果具有更高的精度和更好的收敛性,证明了该方法非常适用于钒电池系统的实时SOC估计,具有理论与应用价值。
暂无评论