Poly(vinylidene fluoride-co-trifluoro ethylene)(PVDF-TrFE)polymers have received significant interest of researchers and academicians in sensor application due to their exceptional sensing ability and piezoelectri...
详细信息
Poly(vinylidene fluoride-co-trifluoro ethylene)(PVDF-TrFE)polymers have received significant interest of researchers and academicians in sensor application due to their exceptional sensing ability and piezoelectric *** material is widely used in biomedical applications,as PVDF have higher flexibility,mechanical resilience and biocompatibility of the PVDF-TrFE polymer as compared to its inorganic counterparts,which makes it an ideal material for the piezoelectric pressure sensor.A high-performance electrically conductive and transparent PVDF-TrFE based electrode using the electrospinning technique was *** PVDF-TrFE based electrode was produced via spray coating of reduced graphene oxide(rGO),multiwall carbon Nanotubes(rGO-MWCNTs)as a nano-hybrid with various concentration followed by vapor phase polymerization(VPP)of poly(3,4-ethylenedioxythiophene)(PEDOT).The electrical performance of the fabricated composite nanofibers was measured by using a four-point contacts *** results showed that the conductivity of the composited nanofiber mats was increased proportionately to 3916 ***-1 with the increase of weigh%of rGO/MWCNTs in the *** significant enhancement in electrical conductivity attributed to hybrid nanocomposite(rGO/MWCNTs/PEDOT)owing to the syergistic effect of hierarchical 1D and 2D hybrid carbon-based ***,the fabrication of PVDF-TrFE doped with rGO(reduced graphene oxide)/MWCNTs(multi-walled carbon nanotubes)hybrid nanofibers mat via electrospinning is *** electrospinning solution loaded with a different weight percent 1.8,2.4,3.2,and 4.0 of rGO/MWCNTs with *** peformance of the as developed nanofiber for the increased electrical,were ***,we demonstrated a self-powered,highly sensitive,and wearable e-skin based on a reduced-graphene-oxide(rGO)-multi-walled carbon nanotube(MWCNTs)doped poly vinylidene fluoride-trifluoro ethylene(PVDF-TrFE)hybrid Nano composite nanofiber
随着信息时代的飞速发展和人类生活水平的快速提高,柔性压敏传感器在塑造智能技术的方面发挥着举足轻重的作用。压敏传感器的两个主要性能指标分别是灵敏度和检测范围。针对这两个关键指标,科研工作者们设计了不同结构来满足其使用要求,包括传统混合式结构、平面微结构和三维多孔结构。相比较于传统混合式结构和平面微结构,三维多孔结构在兼顾灵敏度和应力检测范围方面表现更好。但是,目前针对三维多孔结构柔性压敏传感器的各项研究,依旧没有办法同时满足灵敏度和应力检测范围的要求。在本论文中,为了研究如何同时实现灵敏度高和应力检测范围宽的要求,我们选择了三维多孔结构并加以改进,设计了一种多孔次级结构。通过工艺简单、原料便宜的制作方法,从更换多孔结构支撑层和导电层的角度,制备了同时具有高灵敏度和宽检测范围的柔性压敏传感器。具体研究内容如下:(1)通过构建多孔结构来同时实现灵敏度高和检测范围宽的性能要求。本论文以银纳米线(Ag NWs)作为导电材料以及聚丙烯腈纳米纤维(PANNFs)作为支撑材料构建了一种多孔结构。传感性能测试显示,该柔性压敏传感器的具有良好的灵敏度,最高值为0.437 k Pa-1,其应力检测范围为0-48.4 k Pa。由于纳米尺度下材料优异的柔韧性,使得传感器在8000次循环应力作用下,性能仍旧保持平稳,无明显下降。相较于原本的三维多孔结构,该样品在保持了应力检测范围的条件下,大幅度提高了其检测灵敏度。(2)在碳布作为导电材料的基础上通过构建次级结构来进一步提升传感器的灵敏度和检测范围。我们使用碳布替换Ag NWs作为传感导电层,由于碳布存在灵敏度较低的问题,在碳布上生长ITO纳米线(ITONWs)作为次级结构来对传感器灵敏度进行提升。形貌测试结果显示,当生长温度为800℃时,ITONWs生长紧密并且在长度上具有一定优势。性能测试结果显示,该样品表现出更宽的响应范围(0-195 k Pa),以及更好的灵敏度(0.793 k Pa-1)。相比于研究内容一,构建次级结构后,传感器的灵敏度提升了50%,应力检测范围提升了300%。此外,构建了次级结构的传感器还拥有良好的循环稳定性和出色的人体行为检测能力。本论文对于目前制约压敏传感器发展的检测范围和灵敏度无法同时兼顾的现状,从优化结构设计的角度出发,很大程度上提高了多孔结构柔性压敏传感器的各项性能,使其能够成为未来在人体检测方面具备各项性能要求的传感设备。
暂无评论