针对中文文本检错纠错研究任务,提出了基于知识增强的自然语言表示模型(enhanced representation through knowledge integration, ERNIE)与序列标注结合的中文文本检错纠错模型。该模型由检错和纠错两部分组成,检错阶段ERNIE使用全局...
详细信息
针对中文文本检错纠错研究任务,提出了基于知识增强的自然语言表示模型(enhanced representation through knowledge integration, ERNIE)与序列标注结合的中文文本检错纠错模型。该模型由检错和纠错两部分组成,检错阶段ERNIE使用全局注意力机制进行词向量编码输入到BiLSTM-CRF序列标注模型中,双向长短期记忆网络(bi-directional long short-term memory, BiLSTM)提取上下文的信息进行拼接生成双向的词向量,再通过条件随机场(conditional random field, CRF)计算联合概率增加对邻近词标签的依赖性优化整个序列,从而解决标注偏置等问题给出的错误标注。纠错阶段根据检错模型输出的结果采用不同策略分类纠错,将标注为错字、缺字的错误使用ERNIE掩码语言模型和混淆集匹配进行预测,对多字、乱序错误直接纠正。实验结果表明,引入序列标注根据错误类型进行分类纠错有效提升了纠错率,在SIGHAN数据集上测试F1达到了81.8%。
暂无评论