针对α稳定分布噪声环境下的自适应滤波问题,提出一种新的基于梯度范数的变步长归一化最小平均p范数(variable step-size normalized least mean p-norm,VSS-NLMp)算法。该算法首先对梯度矢量进行加权平滑,以减小梯度噪声的影响,然后利...
详细信息
针对α稳定分布噪声环境下的自适应滤波问题,提出一种新的基于梯度范数的变步长归一化最小平均p范数(variable step-size normalized least mean p-norm,VSS-NLMp)算法。该算法首先对梯度矢量进行加权平滑,以减小梯度噪声的影响,然后利用梯度矢量能够跟踪自适应过程的均方偏差这一特点,利用梯度矢量的欧氏范数控制步长的变化。给出了新算法的迭代过程,然后对其收敛性进行分析,仿真结果表明本算法较现有变步长NLMp算法有更好的性能。
暂无评论