在模糊多分类问题中,由于训练样本在训练过程中所起的作用不同,对所有数据包括异常数据赋予一个隶属度。针对模糊支持向量机(fuzzy support vectormachines,FSVM)的第一种形式,引入类中心的概念,结合一对多1-a-a(one-against-all)组合...
详细信息
在模糊多分类问题中,由于训练样本在训练过程中所起的作用不同,对所有数据包括异常数据赋予一个隶属度。针对模糊支持向量机(fuzzy support vectormachines,FSVM)的第一种形式,引入类中心的概念,结合一对多1-a-a(one-against-all)组合分类方法,提出了一种基于一对多组合的模糊支持向量机多分类算法,并与1-a-1(one-against-one)组合和1-a-a组合的分类算法比较。数值实验表明,该算法是有效的,有较高的分类准确率,有更好的泛化能力。
针对二叉树支持向量机多分类算法准确率与分类效率较低的问题,提出了一种基于加权模糊隶属度的二叉树支持向量机多分类算法(binary tree support vector machines multi-classification algorithm based on weighted fuzzy membership,P...
详细信息
针对二叉树支持向量机多分类算法准确率与分类效率较低的问题,提出了一种基于加权模糊隶属度的二叉树支持向量机多分类算法(binary tree support vector machines multi-classification algorithm based on weighted fuzzy membership,PF-BTSVM)。该算法依据最大最小样本距离与质心距离构造出一个近似完全二叉树,提高了整体结构的分类效率;利用模糊隶属度函数以及正负辅助惩罚因子对训练集进行筛选,剔除掉对分类无用的样本与噪声值,实现了训练集的提纯并且削弱了不平衡分类时超平面的偏移。在数据集上的实验结果表明,与其他二叉树多分类算法相比,该算法在提高分类准确率以及稳定性的同时,还加快了训练与分类的速度,而且当分类的不平衡度越大时这种优势越明显。
暂无评论