近年来,社会化推荐成为了推荐领域的研究热点。在基于用户历史行为的推荐算法中引入用户的社交关系,能够缓解推荐系统面临的数据稀疏性和冷启动的问题。本文提出了一种基于相对信任增强的推荐算法(relative trust enhancement recommendation algorithm based on the CosRA,RTECosRA)。该算法在“用户-物品”的二部图网络中,基于CosRA相似性指标进行资源分配,在资源分配过程中引入用户的信任关系,调整受信任用户获得的资源值,从而提高受信任用户所选物品的推荐率。在FriendFeed和Epinions数据集上的实验结果显示,相比于基准算法,RTECosRA算法在准确性和多样性上均有提高,且加入信任关系后,扩大了用户的可推荐范围,一定程度上缓解了冷启动问题。
为了挖掘多模态信息潜在的同构语义关系,并学习更好的项目表示,提出一种语义图增强多模态推荐(SGEMR)算法。首先,利用辅助的多模态信息补充历史的用户-项目交互,捕捉用户在不同模态下的偏好;然后,基于度量学习将松散的项目序列重新构建为紧密的项目-项目语义图,并设计一个语义层级注意力机制,融合项目的多模态信息;同时,提出一个图重构损失函数,使项目表示保留更多的语义关系,从而提高推荐性能。实验结果表明,在3个真实的数据集上与最优基线算法FREEDOM(FREEzes the item-item graph and DenOises the user-item interaction graph simultaneously for Multimodal recommendation)相比,所提算法的Recall@10分别提升了6.70%、11.30%、5.09%,NDCG@10分别提升了9.09%、12.73%、7.62%,并通过多个消融实验,验证了所提算法的有效性。
暂无评论