像元纯净指数(pixel purity index, PPI)算法是最为常用的端元提取算法之一,但算法中投影向量的随机性导致多次运行的端元提取结果不一致。为此,提出一种基于数据约减和中心化的像元纯净指数端元提取方法(pixel purity index endmember ...
详细信息
像元纯净指数(pixel purity index, PPI)算法是最为常用的端元提取算法之一,但算法中投影向量的随机性导致多次运行的端元提取结果不一致。为此,提出一种基于数据约减和中心化的像元纯净指数端元提取方法(pixel purity index endmember extraction algorithm based on data reduction and centralization, DRC-PPI)。首先利用自动目标生成算法生成候选端元,并进行无约束最小二乘解混,将解混丰度为负的像元从原始数据中移除得到约减数据。其次,对约减数据进行数据中心化进而获得投影向量,将约减数据投影到这些向量上,然后根据样本点的像元纯净指数选择端元光谱。仿真数据和真实高光谱数据实验结果表明,DRC-PPI算法克服了PPI端元提取结果不一致性,大大减少了投影计算量,其端元提取精度总体上高于PPI算法。
暂无评论