近年来,人类探索宇宙空间奥秘的进程加快。随着空间科学任务的要求越来越高以及科学探测设备和技术的不断发展,探测任务越来越多元化,探测器采集的数据量剧增,原始数据信息的传输、存储和处理的困难亟待解决,而数据压缩技术正是缓解这些压力的重要技术,因此,无损数据压缩技术已经成为了空间科学领域中的重要研究课题之一。本文进行的主要研究工作以及取得的成果主要包括以下三点:(1)对无损压缩算法的发展和研究现状进行调研,分析对比了在空间科学任务中常用的无损数据压缩算法的优缺点,归纳了通用的无损数据压缩技术研究现状中存在的问题。其中,CCSDS(The Consultative Committee for Space Data Systems)提出的基于RICE编码的通用无损数据压缩算法对硬件实现友好,结构简单,压缩比在1.6~3.0之间,所以,本文在RICE算法的基本框架上进行研究。(2)针对RICE算法的缺点进行优化探究,设计了一种面向空间科学数据的通用的无损数据压缩算法,具有结构简单、高压缩比的特点。该算法由线性一阶单位时间延迟预测和混合熵编码组成。线性一阶单位时间延迟预测可以利用空间科学数据的时间相关性消除冗余,使得原始数据转变为信息熵更低、更利于熵编码的预测误差数据。该预测方法计算复杂度低,有利于在资源和计算能力有限的星载设备上实现。混合熵编码充分利用预测误差分布的稀疏性和数据编码冗余性,创新性提出分为高熵编码和低熵编码两种不同的编码模式对数据进行编码,进一步提升了压缩效率。不同数据集测试的结果表明,本文提出的算法的压缩比在2.3~5.5之间,相比RICE算法,压缩比平均提升约23%。(3)针对本文提出的算法,设计并实现了基于FPGA的无损数据压缩系统方案,创新性提出对码表进行“升维”操作,减少了码表查询操作的复杂度,以较小的资源开销换得压缩速度的有效提升。最后,通过功能仿真和静态时序分析,设计的无损数据压缩系统可允许的最大工作频率为44.835MHz。
暂无评论