提出一种适用于有色噪声环境下的贝叶斯时变信道估计方法,该方法根据Wishart随机矩阵理论和Gibbs采样方法,首先对有色噪声的协方差阵和信道参数进行初估计,在此基础上,对序贯蒙特卡洛(SMC,sequential monte carlo)采样器的参考分布进行...
详细信息
提出一种适用于有色噪声环境下的贝叶斯时变信道估计方法,该方法根据Wishart随机矩阵理论和Gibbs采样方法,首先对有色噪声的协方差阵和信道参数进行初估计,在此基础上,对序贯蒙特卡洛(SMC,sequential monte carlo)采样器的参考分布进行改进,使用SMC方法对时变信道参数进行盲跟踪(无需导频信号),从而实现了有色噪声下时变信道的半盲估计。与以往的时变信道估计方法相比,该方法具有估计误差小、顽健性强等特点。计算机仿真结果验证了该方法的有效性。
大规模多输入多输出(Multiple-Input Multiple-Output,MIMO)系统的性能增益依赖可靠的信道估计,传统信道估计方案主要面向准静态场景,在用户高速移动场景中性能下降明显。本文研究频分双工(Frequency Division Duplex,FDD)大规模MIMO系统中的时变信道估计问题,利用信道向量在角度域的空时稀疏特性,提出软结构先验模型驱动的稀疏贝叶斯信道估计(Soft-Structured Prior Model based Sparse Bayesian Estimation,SSPM-SBE)方案,针对方案涉及的复杂贝叶斯估计问题,给出基于变分优化的低复杂度求解方法。SSPM-SBE方案能够充分利用当前和历史接收导频数据改善时变信道的估计性能,且无需信道大尺度信息的先验认知,仿真结果验证了方案的优越性。
暂无评论