最小均方(Least Mean Square,LMS)算法的更新方向是对最速下降方向的估计,其收敛速度也受到最速下降法的约束。为了摆脱该约束,该文在对LMS算法分析的基础上,提出一种针对LMS算法的分块方向优化方法。该方法通过分析误差信号来选择更新...
详细信息
最小均方(Least Mean Square,LMS)算法的更新方向是对最速下降方向的估计,其收敛速度也受到最速下降法的约束。为了摆脱该约束,该文在对LMS算法分析的基础上,提出一种针对LMS算法的分块方向优化方法。该方法通过分析误差信号来选择更新向量,使得算法的更新方向尽可能接近Newton方向。基于此方法,给出一种方向优化LMS(Direction Optimization LMS,DOLMS)算法,并推广到变步长DOLMS算法。理论分析与仿真结果表明,该方法与传统分块LMS算法相比,有更快的收敛速度和更小的计算复杂度。
为进一步减小收敛速率与稳态误差之间的矛盾,改善自适应滤波算法,利用改进的Lorentzian函数提出了一种新的变步长凸组合最小均方(new variable step-size convex-combination of least mean square,NVSCLMS)算法,该算法既有效提高了收...
详细信息
为进一步减小收敛速率与稳态误差之间的矛盾,改善自适应滤波算法,利用改进的Lorentzian函数提出了一种新的变步长凸组合最小均方(new variable step-size convex-combination of least mean square,NVSCLMS)算法,该算法既有效提高了收敛速率又具备很好的抗干扰能力。同时,为了克服CLMS算法停滞等待的弊端,采用了瞬时转移结构;另外,在参数的迭代公式中使用sign函数进行优化以降低运算量。仿真结果证明该算法与CLMS、VS-CLMS相比,在不同的仿真环境中均能表现出良好的均方特性和跟踪特性。
暂无评论