软件定义网络(SDN,software defined networking)简化了网络结构,但同时控制器也面临着"单点失效"的安全威胁。攻击者可以发送大量交换机流表中并不存在的伪造数据流,影响网络正常性能。为了准确检测这种攻击的存在,提出了基...
详细信息
软件定义网络(SDN,software defined networking)简化了网络结构,但同时控制器也面临着"单点失效"的安全威胁。攻击者可以发送大量交换机流表中并不存在的伪造数据流,影响网络正常性能。为了准确检测这种攻击的存在,提出了基于条件熵和GHSOM(growing hierarchical SOM)神经网络的DDoS攻击检测方法MBCE&G。首先,依据此DDoS的阶段性特征,定位了网络中的受损交换机以发现可疑攻击流;然后,依据可疑攻击流种类的多样性特征,以条件熵的形式提取了四元组特征向量,将其作为神经网络的输入特征进行更加精确的分析;最后,搭建了实验环境完成验证。实验结果显示,MBCE&G检测方法可以有效检测SDN中的DDoS攻击。
软件定义网络(software defined network,SDN)作为一种新型网络架构,其转控分离及集中控制的架构思想为网络带来了显著的灵活性,同时为感知全局网络状态提供了便利。分布式拒绝服务攻击(distributed denial of service,DDoS)是一种典型...
详细信息
软件定义网络(software defined network,SDN)作为一种新型网络架构,其转控分离及集中控制的架构思想为网络带来了显著的灵活性,同时为感知全局网络状态提供了便利。分布式拒绝服务攻击(distributed denial of service,DDoS)是一种典型的网络攻击方式。针对SDN网络中进行DDoS攻击检测的问题,提出了一种基于条件熵和决策树的DDoS攻击检测方法,利用条件熵判断当前网络状态,通过分析SDN中DDoS攻击特点,提取用于流量检测的6项重要特征,使用C4.5决策树算法进行网络流量分类,实现对SDN中的DDoS攻击的检测。实验表明,相比于其它研究方法,文中提出的方法不仅具有较高检测精确率和召回率,而且明显缩短了检测时间。
暂无评论