如何在海量数据集中提高频繁项集的挖掘效率是目前研究的热点.随着数据量的不断增长,使用传统算法产生频繁项集的计算代价依然很高.为此,提出一种基于Spark的频繁项集快速挖掘算法(fast mining algorithm of frequent itemset based on ...
详细信息
如何在海量数据集中提高频繁项集的挖掘效率是目前研究的热点.随着数据量的不断增长,使用传统算法产生频繁项集的计算代价依然很高.为此,提出一种基于Spark的频繁项集快速挖掘算法(fast mining algorithm of frequent itemset based on spark,Fmafibs),利用位运算速度快的特点,设计了一种新颖的模式增长策略.该算法首先采用位串表达项集,利用位运算来快速生成候选项集;其次,针对超长位串计算效率低的问题,考虑将事务垂直分组处理,将同一事务不同组之间的频繁项集通过连接获得候选项集,最后进行聚合筛选得到最终频繁项集.算法在Spark环境下,以频繁项集挖掘领域基准数据集进行实验验证.实验结果表明所提方法在保证挖掘结果准确的同时,有效地提高了挖掘效率.
现有的基于滑动窗口挖掘高效用项集的研究方法存在:候选项集通常数量巨大,需要大量的存储空间及计算候选项集的真实效用是非常耗时的问题。本文提出一种不生成候选项集的挖掘算法HUISW(high utility itemset mining over a siding windo...
详细信息
现有的基于滑动窗口挖掘高效用项集的研究方法存在:候选项集通常数量巨大,需要大量的存储空间及计算候选项集的真实效用是非常耗时的问题。本文提出一种不生成候选项集的挖掘算法HUISW(high utility itemset mining over a siding window),HUISW采用一种新的树结构HUIL-Tree(high utility itemset tee which arranges items according to lexicographic order)存储滑动窗口中的项集信息,采用效用数据库存储项集在窗口事务中的效用信息,在挖掘过程中HUISW采用模式增长的方法对由HUIL-Tree生成的项集通过其与效用数据库的对应关系,直接计算其在滑动窗口中的效用,整个过程避免了候选项集的生成。在实验中通过由稀疏和稠密数据集模拟的数据流对HUISW进行性能评估,并与同类算法SHU-Growth(siding window based high utility growth)进行比较,实验结果表明HUISW显著优于SHU-Growth,运行时间最快可提升两个数量级。
暂无评论