针对基本灰狼优化(grey wolf optimization,GWO)算法在解决高维数值优化问题时存在易陷入局部最优、收敛速度慢等缺点,提出一种基于收敛因子非线性动态变化的改进GWO(IGWO)算法。该算法首先利用混沌初始化生成初始种群,以提高初始灰狼...
详细信息
针对基本灰狼优化(grey wolf optimization,GWO)算法在解决高维数值优化问题时存在易陷入局部最优、收敛速度慢等缺点,提出一种基于收敛因子非线性动态变化的改进GWO(IGWO)算法。该算法首先利用混沌初始化生成初始种群,以提高初始灰狼个体的质量;然后,通过引入指数函数对GWO算法的收敛因子更新公式进行改进,在进化过程中,收敛因子的大小随迭代次数的增加非线性动态变化,以协调算法的探索能力和开发能力;最后,对当前最优灰狼个体执行混沌扰动,以避免算法出现早熟收敛。对9个典型的测试函数进行了测试,实验结果表明:与基本GWO算法相比,IGWO算法具有更好的寻优性能。
提出了1种基于灰狼优化算法的长短期记忆(long short term memory,LSTM)模型。结合灰狼优化算法全局收敛的优点,将其应用于长短期记忆网络中参数的优化,克服了传统的长短期记忆网络所采用的随时间反向传播(back propagation through tim...
详细信息
提出了1种基于灰狼优化算法的长短期记忆(long short term memory,LSTM)模型。结合灰狼优化算法全局收敛的优点,将其应用于长短期记忆网络中参数的优化,克服了传统的长短期记忆网络所采用的随时间反向传播(back propagation through time,BPTT)算法易于收敛于局部最优的缺点。将所提出的模型应用于时间序列预测,实验结果表明,其性能优于基于BPTT的LSTM。
灰狼优化算法(Grey Wolf Optimization,GWO)是一种新型的群智能优化算法。与其他智能优化算法类似,该算法仍存在收敛速度慢、容易陷入局部极小点的缺点。针对这一问题,提出了具有自适应搜索策略的改进算法。为了提高算法的收敛速度和优...
详细信息
灰狼优化算法(Grey Wolf Optimization,GWO)是一种新型的群智能优化算法。与其他智能优化算法类似,该算法仍存在收敛速度慢、容易陷入局部极小点的缺点。针对这一问题,提出了具有自适应搜索策略的改进算法。为了提高算法的收敛速度和优化精度,通过适应度值控制智能个体位置,并引入了最优引导搜索方程;另一方面,为提高GWO的种群多样性,改进算法利用位置矢量差随机跳出局部最优。最后对10个标准测试函数进行了仿真实验,并与其他4种算法进行了比较,统计结果和Wilcoxon符号秩检验结果均表明,所提出的改进算法在收敛速度以及搜索精度方面具有明显优势。
暂无评论