工业革命以来人类活动引起的温室气体排放量的急剧增加是引起全球气候变化的主要原因,对各领域的温室气体减排是全球减缓气候变化的主要途径。据估计,全球农业源温室气体排放量占人为温室气体排放总量的10%-12%,而农业温室气体技术减排潜力占全球减排潜力的20%。2005年中国农业共排放温室气体约8.2亿吨二氧化碳当量,占全国温室气体总排放的11%,同时约占全球农业源温室气体排放的13%-16%。所以,农业在中国乃至全球的应对气候变化行动中应当发挥重要的作用。因此,中国农田温室气体排放与减排潜力的计量与评价成为中国农业减缓气候变化的重要课题。本论文从构建中国农田生产及温室气体数据库出发,采用数学统计与模型相结合的研究方法,研究中国农田温室气体排放及其减排潜力的统计计量与模型模拟,进而探讨农田温室气体减排的总体潜力及技术途径,为建立农田温室气体排放计量方法及定量表征,并为国家农田温室气体减排政策及技术选择提供科学依据。主要结果如下:
1.本文是基于中国农作物生产数据库、国家耕地监测点有机碳数据库和农田长期试验数据库进行研究的。中国农作物生产数据库是通过对中国农村统计年鉴、中国农业生产成本收益资料汇编、中国水利统计年鉴中数据进行搜集而建立的,主要包括各种农作物播种面积、产量、化肥投入量、农药投入量、农膜使用量、机械燃油用量和灌溉量,该数据库用来计算农作物生产碳足迹。国家耕地监测点有机碳数据库包含299个国家级耕地监测点近20余年的有机碳数据,这些耕地监测点分布在全国各个区域,有着不同的种植制度,该数据库用来分析中国农田表土有机碳近20余年的变化情况,还用来估算农田表土固碳潜力。农田长期试验数据库是通过搜集已发表文献中长期试验数据搜集而建立的,该数据库包括试验点地理信息、种植制度、管理模式、农田投入等农田基础信息,还包括有机碳含量(试验开始前和结束时)、氧化亚氮和甲烷排放量、作物产量等数据。该数据库主要用来估算农田表土固碳潜力、开发DAYCENT甲烷子模型以及验证DAYCENT模型。
2.基于299个国家级耕地监测点20余年有机碳数据库,分析了中国农田表土有机碳近20年的变化情况,从而评价了农业发展中土壤固碳趋势。结果表明,全国约80%的监测点有机碳年均相对变化幅度在-1.5%-7.5%之间。整体上,中国农田呈固碳趋势;其中,华北、华东和西南地区农田表土固碳明显。对旱地和稻田两种管理模式下农田有机碳数据分析结果显示,稻田和旱地有机碳含量均呈现显著的增加,而稻田有机碳含量增加的监测点数目占监测点总数的比例高于旱地。证实了我们对中国农田近20多年来的土壤固碳趋势以及稻田固碳明显强于旱地的认识。同时,基于中国农田表土有机碳数据库,本研究计算和比较了中国不同区域、不同类型的农田土壤有机碳储量。中国农田表土有机碳储量为36.44tha-1,其中,西南地区农田有机碳储量最高,为42.96tha-1,而西北地区最低,为25.18tha-1。旱地有机碳平均密度为29.14tha-1,远低于稻田(43.73tha-1)。西南地区和东北地区旱地有机碳储量最高,分别为38.45tha-1和36.43tha-1,而华南地区稻田的有机碳密度最高,为55.97tha-1。
3.农作物生产的碳足迹是指在某个作物生长过程中由人为投入的生产资料或者器械使用所带来的总的温室气体排放量,并以碳当量(carbon equivalent, CE)来表示。本研究采用生命周期评价-碳足迹分析研究方法,基于中国农作物生产数据库,分析了农作物生产的碳足迹及其构成的变化趋势。中国农作物生产单位面积的平均碳足迹为0.78±0.08t CE ha-1yr-1,单位产量农作物的平均碳足迹为0.11±0.01t CE t-1yr-1。由肥料施用引起的温室气体排放占总碳足迹的60%,而氮肥施用量的变化可以解释15年来碳足迹变化的97%。1993-2007年15年间,单位面积的碳足迹增加了49%,单位产量的碳足迹下降了21%。尽管作物产量与碳足迹呈极显著的正相关关系,但2003-2007年单位碳投入的作物产量(碳利用效率)呈下降趋势。该结果揭示了中国农作物生产碳成本较高,而有着巨大的减排空间。中国水稻、小麦、玉米和大豆生产单位面积的平均碳足迹分别为2472、794、781和222kg CE ha-1,单位产量的碳足迹分别为0.37、0.14、0.12和0.1kg CE kg-1。旱作作物如小麦、玉米和大豆生产78%的碳足迹来自氮肥施用,氮肥施用引起的温室气体排放包括氮肥生产的间接温室气体排放和氧化亚氮的农田直接排放:水稻生产的碳足迹主要来自甲烷排放的贡献(69%)。不同区域间旱作作物碳足迹的差异主要是由于氮肥施用量的差异,而甲烷排放可以解释85%的区域间水稻碳足迹变异。减少这些作物化学氮肥施用
森林生态系统水热和CO2传输过程是国际研究的前沿问题。理解森林生态系统水、能量和CO2传输机制有助于了解森林生态系统在陆地生态系统碳水循环中的作用,并认识森林生态系统过程与功能对干旱与气候变化的响应规律。本研究将基于生理生态学过程,模拟生态系统下垫面与大气之间碳水通量交换的综合模型—EALCO(Ecological Assimilation of Land and Climate Observation)模型引入国内,将其应用在中亚热带人工针叶林生态系统,对模型进行参数化与初始化使其能够较好地连续模拟该生态系统三年连续的碳、水和能量通量交换状况,同时用通量观测数据对模拟结果进行检验,利用EALCO模型揭示该生态系统碳水通量的驱动机制及季节性干旱对人工针叶林生态系统碳吸收及其碳水通量耦合关系的影响,模拟和预测未来气候变化情景下人工针叶林生态系统对气候变化的响应和碳收支状况,以期为我国估计大区域尺度生态系统碳平衡的时间和空间格局特征提供模型储备。
本文的主要研究成果如下:
(1)将EALCO模型进行参数化和初始化,并改变模型的光合作用时段和落叶机制等,使之能够较好地模拟亚热带人工针叶林生态系统碳水通量状况,利用通量站的观测数据与模型模拟结果进行比对,检验了模型对水和能量通量特征的模拟效果:
结果表明模型对两个重要的中间变量,即冠层温度和水势的模拟结果较为理想。通过将冠层气孔导度的模拟值与利用Penman-Monteith公式计算的表面导度进行对比发现,除2005年模型模拟的冠层导度偏高外,对其它两年的模拟效果较为理想。净辐射三年的模拟值与实测值之间的相关系数均在0.98以上,模拟效果理想。模拟结果表明,被森林地面吸收的净辐射(Rn,s)和被冠层吸收的净辐射(Rn,c之间的比率也表现出比较明显的季节变化形式,比率的月平均值在4或5月份达到最大值0.35左右,之后逐渐减小,至12月或1月降至最低值0.05左右。2003年和2004年潜热通量与显热通量的模拟结果好于2005年。总体来看,三年潜热通量和显热通量模拟值与实测值的相关系数平均分别为0.82和0.62。模拟结果显示,森林地面日平均潜热通量的模拟值介于5-40W m-2之间,2003-2005年森林地面年总潜热通量分别占年总冠层潜热通量(LEs/LEe)的8%、11%和12%。观测与模拟的生态系统潜热通量(LEe)占净辐射(R_n)的比例在年初至春季(DOY120)之前较小,在30%-50%之间,进入生长旺季,LEe/R_n逐渐增加,在50%-80%之间。显热通量的日平均值无明显的季节变化规律,较高的显热通量通常在春季(DOY100前后)出现。
(2)检验了模型对碳通量特征的模拟效果:
从碳通量的日变化来看,模型能够较好的模拟碳通量的日变化形式,对2003-2005年的模拟结果进行统计分析表明,模型对NEP的模拟相关系数为0.67,斜率及标准差分别为0.90和3.96μmol C m-2s-1,可见模型可以在很大程度上反应出该生态系统NEP的日变化趋势。模型对土壤呼吸在半小时尺度上的模拟值接近或略高于静态箱-气象色谱法的土壤呼吸观测值。从碳通量的季节变化来看,模型对2003-2005年GPP、Re和NEP的模拟结果也较为理想,2003年7月和10月生态系统受到干旱胁迫期间,模型对GPP和Re均存在高估现象。利用箱式法的观测数据与模型模拟的土壤呼吸日总量进行了对比,除2005年生长季期间的模拟值与观测值差异较大,其它年份的模拟值与观测值基本一致。对生态系统各种呼吸组分的模拟结果显示,该生态系统自养呼吸占生态系统总呼吸的比例较为固定为88%。就生态系统自养呼吸来讲,在全年中,植被的维持呼吸均大于生长呼吸。2003-2005年维持呼吸占自养呼吸的比例分别为77%、72%和76%。对土壤呼吸各组分的模拟结果表明,三年中,模拟的根系自养呼吸占土壤总呼吸的70%。
(3)分析了季节性干旱对人工针叶林生态系统碳水通量的影响:
研究结果表明深层土壤水分含量是决定冠层导度的主要因素,进而影响GPP的大小;干旱对GPP的影响比对Re的影响更为强烈,因此碳吸收能力的下降主要由GPP下降剧烈引起,对GPP下降的环境因素进一步分析表明,在晴天正午之前对光合作用能力产生抑制的因素主要是深层土壤水分,正午之后深层土壤水分匮缺与高温共同影响生态系统光合作用能力,两者对光合作用能力的削弱作用各占一半。2003年高温干旱期间,生态系统呼吸值下降33%左右,生态系统呼吸的降低主要是由植物自养呼吸和土壤异养呼吸的减小共同作用引起。其中自养呼吸的减小主要是由生长呼吸的减小所导致。2003年持续的夏季高温致使生态
暂无评论