Dengue virus type 2 NS3, a multifunctional protein, has a serine protease domain (NS3pro) that requires the conserved hydrophilic domain of NS2B for protease activity in cleavage of the polyprotein precursor at sites ...
详细信息
Dengue virus type 2 NS3, a multifunctional protein, has a serine protease domain (NS3pro) that requires the conserved hydrophilic domain of NS2B for protease activity in cleavage of the polyprotein precursor at sites following two basic amino acids. In this study, we report the expression of the NS2B-NS3pro precursor in Escherichia cole as a fusion protein with a histidine tag at the N terminus. The precursor was purified from insoluble inclusion bodies by Ni2+ affinity and gel filtration chromatography under denaturing conditions. The denatured precursor was refolded to yield a purified active protease complex. Biochemical analysis of the protease revealed that its activity toward either a natural substrate, NS4B-NS5 precursor, or the fluorogenic peptide substrates containing two basic residues at P1 and P2, was dependent on the presence of the NS2B domain. The peptide with a highly conserved Gly residue at P3 position was 3-fold more active as a substrate than a Gin residue at this position. The cleavage of a chromogenic substrate with a single Arg residue at P1 was NS2B-independent. These results suggest that heterodimerization of the NS3pro domain with NS2B generates additional specific interactions with the P2 and P3 residues of the substrates.
The aetiologic agent of the recent epidemics of Severe Acute Respiratory Syndrome (SARS) is a positive-stranded RNA virus (SARS-CoV) belonging to the Coronaviridae family and its genome differs substantially from thos...
详细信息
The aetiologic agent of the recent epidemics of Severe Acute Respiratory Syndrome (SARS) is a positive-stranded RNA virus (SARS-CoV) belonging to the Coronaviridae family and its genome differs substantially from those of other known coronaviruses. SARS-CoV is transmissible mainly by the respiratory route and to date there is no vaccine and no prophylactic or therapeutic treatments against this agent. A SARS-CoV whole-genome approach has been developed aimed at determining the crystal structure of all of its proteins or domains. These studies are expected to greatly facilitate drug design. The genomes of coronaviruses are between 27 and 31.5 kbp in length, the largest of the known RNA viruses, and encode 20-30 mature proteins. The functions of many of these polypeptides, including the Nsp9-Nsp10 replicase-cleavage products, are still unknown. Here, the cloning, Escherichia coli expression, purification and crystallization of the SARS-CoV Nsp9 protein, the first SARS-CoV protein to be crystallized, are reported. Nsp9 crystals diffract to 2.8 Angstrom resolution and belong to space group P6(1/5)22, with unit-cell parameters a=b=89.7, c=136.7 Angstrom. With two molecules in the asymmetric unit, the solvent content is 60% (V-M=3.1 Angstrom(3) Da(-1)).
暂无评论