设单位圆U={z:|z|<1}内正则单叶函数f(z)=z+sum from n=2 to ∞ a_nz~n的逆函数f-1(z)在整个单位圆内有一个解析的而且是单叶的扩张,则称f(z)为双向单叶函数,记其全体为族σ。1967年,Levin证明了在σ中,|a2|<1.51,本文用Gol...
详细信息
设单位圆U={z:|z|<1}内正则单叶函数f(z)=z+sum from n=2 to ∞ a_nz~n的逆函数f-1(z)在整个单位圆内有一个解析的而且是单叶的扩张,则称f(z)为双向单叶函数,记其全体为族σ。1967年,Levin证明了在σ中,|a2|<1.51,本文用Goluzin不等式证明了在σ中,a2≠1.485,从而得到了|a2|<1.485。
暂无评论