alpha-Synuclein is a major component of aggregates forming amyloid-like fibrils in diseases with Lewy bodies and other neurodegenerative disorders, yet the mechanism by which alpha-synuclein is intracellularly aggrega...
详细信息
alpha-Synuclein is a major component of aggregates forming amyloid-like fibrils in diseases with Lewy bodies and other neurodegenerative disorders, yet the mechanism by which alpha-synuclein is intracellularly aggregated during neurodegeneration is poorly understood. Recent studies suggest that oxidative stress reactions might contribute to abnormal aggregation of this molecule. In this context, the main objective of the present study was to determine the potential role of the heme protein cytochrome c in alpha-synuclein aggregation. When recombinant alpha-synuclein was coincubated with cytochrome c/hydrogen peroxide, alpha-synuclein was concomitantly induced to be aggregated. This process was blocked by antioxidant agents such as N-acetyl-L-cysteine. Hemin/hydrogen peroxide similarly induced aggregation of alpha-synuclein, and both cytochrome c/hydrogen peroxide- and hemin/hydrogen peroxide-induced aggregation of alpha-synuclein was partially inhibited by treatment with iron chelator deferoxisamine. This indicates that iron-catalyzed oxidative reaction mediated by cytochrome c/hydrogen peroxide might be critically involved in promoting alpha-synuclein aggregation. Furthermore, double labeling studies for cytochrome c/alpha-synuclein showed that they were colocalized in Lewy bodies of patients with Parkinson's disease. Taken together, these results suggest that cytochrome c, a well known electron transfer, and mediator of apoptoticcell death may be involved in the oxidative stress-induced aggregation of alpha-synuclein in Parkinson's disease and related disorders.
Mass spectrometric techniques for identification of proteins by "mass fingerprinting" (matching the masses of tryptic peptides fi-om a protein digest to the theoretical peptides in a database) such as matrix...
详细信息
Mass spectrometric techniques for identification of proteins by "mass fingerprinting" (matching the masses of tryptic peptides fi-om a protein digest to the theoretical peptides in a database) such as matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) are rapidly growing in popularity as the demand for high throughput analysis of the proteome increases. This is due, in part, to the ability to automate the technique and the rapid rate with which mass spectra may be acquired. An important factor in the accuracy of the technique is the number of tryptic peptides that are identified in the various searching algorithms that exist. The greater sequence coverage of the parent protein that is obtained, the higher the level of confidence in the identification that is determined. One impediment to high levels of sequence coverage is the bias of MAL]DI-TOF mass spectrometry to arginine-containing peptides. Increasing the sensitivity to lysine-containing peptides should increase the sequence coverage obtained. In order to achieve this result me have developed conditions to modify the E-amine group of lysine in tryptic peptides with O-methylisourea. The conditions utilized result in the conversion of lysine to homoarginine with no modification of the amine terminus of the peptides. The sensitivity of MALDI-TOF mass spectrometry detection of peptides was increased dramatically following modification. The modification chemistry may be applied to tryptic peptide mixtures prior to desalting and spotting onto MALDI-TOF plates. This technique will be particularly useful for identifying proteins with a high lysine/arginine ratio. (c) 2000 Academic Press.
Two fundamental approaches for the coupling of microfabricated devices to electrospray mass spectrometry (ESI-MS) have been developed and evaluated. The microdevices, designed for electrophoretic separation, were cons...
详细信息
Two fundamental approaches for the coupling of microfabricated devices to electrospray mass spectrometry (ESI-MS) have been developed and evaluated. The microdevices, designed for electrophoretic separation, were constructed from glass by standard photolithographic/wet chemical etching techniques. Both approaches integrated sample inlet ports, preconcentration sample loops, the separation channel, and a port for ESI coupling. In one design, a modular, reusable microdevice was coupled to an external subatmospheric electrospray interface using a liquid junction and a fused silica transfer capillary. The transfer capillary allowed the use of an independent electrospray interface as well as fiber optic UV detection. In the second design, a miniaturized pneumatic nebulizer was fabricated as an integral part of the chip, resulting in a very simple device, The on-chip pneumatic nebulizer provided control of the flow of the electrosprayed liquid and minimized the dead volume associated with droplet formation at the electrospray exit port. Thus, the microdevice substituted for a capillary electrophoresis instrument and an electrospray interface-traditionally two independent components. This type of microdevice is simple to fabricate and may thus be developed either as a part of a reusable system or as a disposable cartridge, Both devices were tested on cE separations of angiotensin peptides and a cytochrome c tryptic digest. Several electrolyte systems including a transient isotachophoretic preconcentration step were tested for separation and analysis by an ion trap mass spectrometer.
暂无评论