最近,由Vapnik等提出的统计学习理论及从中发展出的支持向量机(Sup-port Vector Machines,SVM)方法,在回归算法的研究中表现出极好的性能,被认为是神经网络的替代方法,目前在时间序列预测领域也开始得到应用.SVM无论在理论还是在实践中,在非线性时间序列预测领域都具有优秀的表现和应用前景.本文将小波理论与SVM方法结合起来,互补二者优势,提出了一种称为小波支持向量机(Wavelet Support VectorMachines,WSVM)的新的机器学习方法.该方法引入小波基函数来构造SVM的核函数,得到了一种新的SVM模型,它除了具有SVM的一切优点外,还能消除数据的高频干扰,具备良好的抗噪能力.本文将这一新方法应用于经济预测中,得到了较高的预测精度,表明WSVM方法是一种很有潜力的机器学习方法.
暂无评论